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Abstract: We study the possibility of designing satisfactory ex post incentive
compatible single valued direct mechanisms in interdependent values environ-
ments, characterized by the set of agents’ type profiles and by their induced
preference profiles. For environments that we call knit and strict, only constant
mechanisms can be ex post (or interim) incentive compatible. For those called
partially knit, ex post incentive compatibility extends to groups, and strategy-
proofnes implies strong group strategy-proofness in private values environments.
The results extend to mechanisms operating on non-strict domains under an addi-
tional requirement of respectfulness. We discuss voting, assignment and auctions
environments where our theorems apply.
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1 Introduction

A major concern when designing economic mechanisms is to provide agents with incentives
to reveal their true characteristics. Setting aside some obviously unsatisfactory solutions, it
is well understood that attaining this objective is not always possible. Moreover, when it is,
a conflict often arises between the mechanisms’effi ciency and incentive compatibility. These
generic statements hold for different formulations of the mechanism design problem, and for
various concepts of equilibrium.
In this paper we consider situations where agents’values may be interdependent, and

their preference profiles only fully determined once the joint profile of types is known. In that
context, we study the possibility of designing direct mechanisms that are ex post incentive
compatible. Since that property does not require Bayesian updating, we work in a framework
where agents’preferences are ordinal.
We start from the remark that a mechanism can only meet attractive lists of desiderata

if the class of problems to be dealt with is somewhat constrained. In those cases where types
are identified with preferences and agents’values are not interdependent, we can properly
refer to these constraints as domain restrictions. In the general case of interdependent values,
mechanisms are defined as functions assigning an alternative to each profile of types, but the
analysis of their incentive properties requires to know, in addition, the functional relation
between type profiles and preference profiles, that we call the preference function. Because of
that, we define environment as pairs, formed by the class of type profiles in the domain of the
mechanism, and also by the preference function that applies in each case. Our restrictions
will be predicated on environments, rather than only on domains.
In addition to this important nuance regarding the objects on which restrictions must be

formulated, we would like to emphasize the generality of our approach.
The type of restrictions we impose on environments are quite abstract, because we look

for the common features of families of environments, rather than those directly suggested by
single applications. The classes of environments that we are about to describe informally,
and rigorously define in the next section, are suggested by a careful analysis of a variety
of possibility and impossibility results that arise in different fields of application. While
the models that are proposed in each case may look quite unrelated at first glance, our
approach allows us to go beyond their specific features, and to identify essential and common
characteristics.
We define two classes of environments that we call knit and partially knit. Both must meet

requirements regarding the possibility to connect admissible pairs of type profiles through
sequences of changes in individual types, which are defined in reference to certain alternatives
and through the use of the preference function. The set of pairs of type profiles and reference
alternatives for which the requirements must be met for an environment to be knit is larger
than for it to be partially knit. Thus, the latter is a weaker condition.1

1The purpose of our introduction is to present the reader with a general roadmap. The details regarding
what we exactly mean by the terms connecting pairs of type profiles, or adequate conditions are provided
in the formal definitions in Section 2, and clearly illustrated in the analysis of examples of applicatons in
Appendix B. Similar caveats apply to other terms that may be used loosely here and will be made precise
in the coming sections.
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Let’s now describe the demands we impose on mechanisms, in order to consider them
satisfactory. One first attractive and well-studied requirement is that of ex post incentive
compatibility2, guaranteeing truthful revelation of types to be a Nash equilibrium in all the
games that result from any specification of possible type profiles. We also introduce a second
concept, that of ex post group incentive compatibility, under which truthful revelation is
required to be a strong Nash equilibrium. These are our main target properties, and we can
obtain possibility and impossibility results regarding them, for those environments that we
call strict, where agents are never indifferent between alternatives. In the general case where
some agents may be indifferent among several alternatives, we need to use an additional
condition that we call respectfulness. This condition, when applied to private values is
a distant relative of non-bossiness (Satterthwaite and Sonnenschein, 1981), but much less
demanding than this or other similar conditions analyzed in Thomson (2016). It is mostly
required to avoid manipulations by one agent that could benefit others while not gaining
anything in exchange.
We present two main types of results, regarding environments that are knit or partially

knit, respectively. Two of them are in the vein of impossibility theorems. Theorem 1 states
that only constant mechanisms can be ex post incentive compatible and respectful in knit
environments. Corollary 1 reaches the same conclusion for strict environments without need
to invoke respectfulness, which trivially holds in that case. In fact, the results only apply to
the case of interdependent values because, as we prove later on, no environment can be knit
in the particular case of private values. The informed reader will observe that the conclusion
of our theorem is the same that was obtained by Jehiel, Meyer-Ter-Vehn, Moldovanu, and
Zame (2006), but the analogy stops here, since the context and the assumptions in each case
are very different. Also notice that, since we work with single valued direct mechanisms, our
environments are separable in the sense of Bergemann and Morris (2005), and their Corol-
lary 1 applies: no mechanism is interim incentive compatible unless it is ex post incentive
compatible. Because of that, Theorem 1 and Corollary 1 have direct implications on the
weaker interim notion, with no need to be explicit about agents’beliefs.
Our Theorem 2 can be read as being positive or negative, depending on the specific

context of application. Corollary 2 reaches the same conclusion for strict environments
without need to invoke respectfulness. It states that all respectful and ex post incentive
compatible mechanisms for a partially knit environment will also be ex post group incentive
compatible. This result applies both in the case of interdependent and that of private values.
They allow us to better understand the possibility of achieving some form of effi ciency
through the use of incentive compatible mechanisms. To see that, first notice that ex post
group incentive compatibility implies Pareto effi ciency on the range of the mechanism. This
may not be much to say in some cases: for example, if the range is small relative to the whole
set of alternatives, or when the mechanism is dictatorial. But we shall exhibit examples of

2The study of incentive compatibility in Bayesian terms was started by d’Aspremont and Gérard-Varet
(1979), and Arrow (1979), and its appropriate formulation and results depend on the information that
will be available to the agents at the time where the analysis is carried out. The case of interdependent
values was first studied by D’Aspremont, Crémer, and Gérard-Varet (1990). The notion of ex post incentive
compatibility corresponds to the time where agents have received all possible information, and can be defined
without attributing cardinal utility to agents, as it does not require Bayesian update. See Jackson (2003).

2



full range and far from dictatorial Pareto effi cient mechanisms that are ex post incentive
compatible in partially knit environments.
It is also important to recall that, in the case of private values, ex post incentive compat-

ibility is equivalent to strategy-proofness. Likewise, ex post group incentive compatibility
becomes equivalent to strong group strategy-proofness. Hence, a corollary for the case of pri-
vate values is that, under the conditions of our second theorem, individual and strong group
strategy-proofness become equivalent. This parallels results that we obtained in Barberà,
Berga, and Moreno (2010, 2016) connecting individual and weak group strategy-proofness.3

Our discussion has been abstract till now, but we already said that our results are based
in a careful analysis of a variety of problems that arise in different settings, and in spe-
cific models that are inspired by essential contributions to several fields of application. We
illustrate this by providing examples of situations where our results apply. The examples
come in pairs. Two of them refer to deliberative juries and are inspired in our reading of
Austen-Smith and Feddersen (2006). Our second pair of examples adress the problem of as-
signing indivisible objects as in Che, Kim, and Kojima (2015). The last two examples refer
to auctions, following the trail of Dasgupta and Maskin (2000) and Jehiel, Meyer-Ter-Vehn,
Moldovanu, and Zame (2006).
We attach much importance to these examples for several reasons. One reason is that

they show the unifying power of our approach. The models we get inspiration from look very
different from each other, because they describe the types of agents in terms that are specific
to each application. Yet our conditions and conclusions apply to all of them at a time. This
is because we have arrived at the abstract formulation of our environments by scrutinizing
what is common in the nature of these settings, and many others, for which results about
ex post incentive compatibility and related concepts had been carefully explored.
A second reason is that, in each of the applications, we can provide blood and flesh to the

general and rather abstract notion of a preference function, by exhibiting how it is defined
to fit the particulars of the case at hand.
A third and very important reason to present the examples in pairs is because they allow

us to show that the frontier between worlds where impossibility prevails, and others where ex
post incentive compatibility is compatible with a high degree of effi ciency can be surprisingly
thin. For each one of our fields of application, we present examples that look rather similar
and yet belong to one of these worlds or to the other, depending on whether the preference
function associated with a set of types leads to a knit environment or does not. Since knit
environments are also partially knit, our Theorem 2 applies also there, if only to the constant
function. But our examples clarify that attractive mechanisms may exist on partially knit
environments.
The paper proceeds as follows. In the next Section 2 we present the general framework

and define the restrictions on environments that we propose, and the kind of mechanisms
we shall concentrate on. Section 3 contains the general results and their proofs. Section 4
provides examples of applications and ties them in with our general framework. Appendix
A and B contain proofs of results presented in Section 2 and 4, respectively.

3A pioneering paper by Shenker (1993) investigated the connections between individual and group
strategy-proof non-bossy social choice rules in economic environments. For a recent reference on effi ciency
in general environments, see Copic (2017).
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2 The model

Let N = {1, 2, ..., n} be a finite set of agents with n > 2 and A be a set of alternatives.
Each agent i ∈ N is endowed with a type θi belonging to a set Θi. Each θi includes all

the information in the hands of i. We denote by Θ = ×i∈NΘi the set of type profiles. A type
profile is an n-tuple θ = (θ1, ..., θn) ∈ Θ that we will write as θ = (θC , θN\C) when we want
to stress the role of coalition C in N .
Let R̃ be the set of all complete, reflexive, and transitive binary relations on A and

Ri ⊆ R̃ be the set of those preferences that are allowed for individual i. While Ri ∈ R̃
denotes agent i’s preferences, let Pi and Ii be the strict and the indifference part of Ri,
respectively.
Once type profiles are fully determined, so are the agent’s preference profiles. We for-

malize this dependence through the notion of a preference function.

Definition 1 Let Θ be a set of types. A preference function R on Θ, R : Θ→ ×i∈NRi,
assigns a preferences profile R(θ) to each type profile θ ∈ Θ.

We call R(θ) = (R1(θ), ..., Rn(θ)) the preferences profile induced by the type profile θ
while Ri(θ) ∈ Ri stands for the induced preferences of agent i at θ. Notice that Ri may
be different for each agent.4 As usual Pi(θ) and Ii(θ) denote the strict and the indifference
part of Ri(θ), respectively. Note that the domain of the preference function R is a Cartesian
product including all possible type profiles, but its range may be a non-Cartesian strict
subset of ×i∈NRi.
An environment is a pair (Θ, R) formed by a set of types and a preference function.

Following standard use, private values environments are those where each agent’s component
of the preference function only depends on her type. That is, Ri(θ) = Ri(θi, θ

′
N\{i}) for each

agent i ∈ N , θ ∈ Θ, and θ′N\{i} ∈ ×j∈N\{i}Θj. Otherwise, we are in interdependent values
environments. In private values environments, abusing notation, we will write Ri(θi) instead
of Ri(θ).
In some private values environments, individual types can be identified with their individ-

ual preferences. These are those where the preference function is biunivocal and establishes
a one to one relationship between an agent’s type and this agent’s component of the prefer-
ence function. Then, we can identify the environment with the set of preference profiles and
properly refer to the constraints on environments as domain restrictions.
Elements in the range of a preference function may be restricted to satisfy further con-

ditions. In particular, if an environment (Θ, R) is such that for all θ ∈ Θ and agent i ∈ N ,
Ri(θ) ∈ Ri is a strict preference, we will say that this environment is strict.
Our results refer to direct mechanisms. In fact, the properties we discuss are best analyzed

with reference to the direct mechanism associated to any general one that might be described
in terms of different message spaces and outcome functions.
A direct mechanism on Θ is a function f : Θ → A such that f(θ) ∈ A for each θ ∈

Θ. From now on, we drop the term "direct" and refer to mechanisms, without danger of
ambiguity.

4This is the case, for example, in economies with private goods when individuals are selfish.
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Notice that, by letting Θ be the domain of f , we implicitly assume that all type profiles
within this set are considered to be feasible by the designer.
We shall now identify two important conditions on environments (Definitions 5 and 6)

that may or may not be satisfied. Both conditions start by considering sequences of type
profiles that result from changing the type of individual agents, one at a time. These se-
quences are identified in detail in Definitions 5 and 6. Before that, we need some previous
notation and definitions.
For any x ∈ A and Ri ∈ R̃, U(Ri, x) = {y ∈ A : yRix} is the upper contour set of Ri at

x and U(Ri, x) = {y ∈ A : yPix} is the strict upper contour set of Ri at x. It will be useful
to pay attention to the relationship between certain pairs of preferences.

Definition 2 We say that R′i ∈ R̃ is an x-monotonic transform of Ri ∈ R̃ if U(R′i, x) ⊆
U(Ri, x) and U(R′i, x) ⊆ U(Ri, x).

Equivalently, R′i is an x-monotonic transform of Ri if there exists a subset of x’s indif-
ference class in Ri, containing x, such that the relative position of its elements has weakly
improved when going from Ri to R′i.

5

A special class of monotonic transforms that are easy to identify are those where two
preference relations have exactly the same weak and strict upper contour sets for a given
alternative x. Then we say that they are reshuffl ings of each other, and each of the two
preferences are, in particular, monotonic transforms of the other.
We are now able to define the sequences of types relevant in the definitions of knit and

of partially knit environments.
Let S =

{
θSi(S,1), ..., θ

S
i(S,tS)

}
be a sequence of individual types of length tS, such that for

each h ∈ {1, ..., tS}, θSi(S,h) ∈ Θi(S,h). Agents may appear in that sequence several times or
not at all. I(S) = {i(S, 1), ..., i(S, tS)} is the sequence of agents whose types appear in S
and i(S, h) is the agent in position h in S.

Given θ ∈ Θ and S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
, we consider the sequence of type profiles

mh(θ, S) that results from changing one at a time the types of agents according to S, starting
from θ. Formally, mh(θ, S) ∈ Θ is defined recursively so that m0(θ, S) = θ and for each

h ∈ {1, ..., tS}, mh(θ, S) =
((
mh−1(θ, S)

)
N\i(S,h) , θ

S
i(S,h)

)
.

Definition 3 Let θ ∈ Θ, and S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
. We call the sequence of type profiles{

mh(θ, S)
}tS
h=0

the passage from θ to θ′ through S if mtS(θ, S) = θ′ for θ′ ∈ Θ.

More informally, we say that θ leads to θ′ through S.
Notice that a given passage from θ to θ′ through S induces a corresponding sequence of

preference profiles, Rh(θ, S) = (Rh1(θ, S), ..., Rhn(θ, S)) ∈ ×i∈NRi for h ∈ {0, 1, ..., tS} where
for each agent i ∈ N , we define Rhi (θ, S) ≡ Ri

(
mh(θ, S)

)
∈ Ri, that is, as the ith component

of the preference function at the type profile mh(θ, S).

5In our previous paper Barberà, Berga, and Moreno (2012), we present a similar condition but with
additional requirements.
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We can now establish a condition on the connection between sequences of changes in type
profiles and the changes in preference profiles that they induce by means of the preference
function.

Definition 4 Let x ∈ A, θ, θ′ ∈ Θ. We will say that the passage from θ to θ′ through S
is x-satisfactory if for each h ∈ {1, ..., tS}, Rhi(S,h) (θ, S) is an x-monotonic transform of
Rh−1i(S,h) (θ, S).

Notice that in the case of private values the order of individuals in S could be changed
and the new sequence would still serve the same purpose. This is because the changes in
the type of each agent only induce changes in the preferences of this agent. By contrast, the
precise order of agents I(S) may be crucial in the case of interdependent values. We say
that x is the reference alternative when going from θ to θ′.
We use Example 1 to illustrate the concept of satisfactory and non-satisfactory passages

in an interdependent values environment.6

Example 1 Let N = {1, 2} and A = {a, b, c}. Each agent i has two possible types:
Θi = {θi, θi}. The preference function R is defined in Table 1. We write, in each cell,
the preferences of both agents for a given type profile represented by an ordered list from
better to worse, with parethesis in case of indifferences. Observe that agent 2’s preferences
over b and c depend on agent 1’s type: bP2(θ1, θ2)c while cP2(θ1, θ2)b, that is, we are in an
interdependent values environment.

R θ2 θ2

θ1
R1(θ1, θ2) R2(θ1, θ2)
acb b(ac)

R1(θ1, θ2) R2(θ1, θ2)
bca a(bc)

θ1
R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

Table 1. Preference function for Example 1.

Notice that the range of R is not a Cartesian product, since R1 = {acb, bca, c(ab)} and
R2 = {b(ac)), a(bc), c(ab)} but the preferences profile (acb, a(bc)) are not in the range of the
preference function R.

Let x = a, θ = (θ1, θ2), θ
′ = (θ1, θ2), and S =

{
θ2, θ1, θ2

}
a sequence of individual types.

Note that, I(S) = {2, 1, 2} and tS = 3. We claim that the passage from θ to θ′ through S is
a-satisfactory. To show it, we have to check that for each h ∈ {1, 2, tS = 3}, Rhi(S,h) (θ, S) is
an a-monotonic transform of Rh−1i(S,h) (θ, S).

For that, observe first that R0i(S,1) (θ, S) = R2(θ1, θ2), R
1
i(S,1) (θ, S) = R2(θ1, θ2), R

1
i(S,2) (θ, S) =

R1(θ1, θ2), R
2
i(S,2) (θ, S) = R1(θ1, θ2), R2i(S,2) (θ, S) = R2(θ1, θ2), and R3i(S,2) (θ, S) = R2(θ1, θ2).

Then, using the table in Example 1, note that the following three facts hold: R2(θ1, θ2) =

6This example adapts, in ordinal terms, the one proposed by Bergemann and Morris (2005) as their
Example 1.
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a(bc) is an a-monotonic transform of R2(θ1, θ2) = b(ac) since U(R2(θ1, θ2), a) = {a, b, c} ⊆
U(R2(θ1, θ2), a) = {a, b, c} and U(R2(θ1, θ2), a) = ∅ ⊆ U(R2(θ1, θ2), a) = {b}. More-
over, R1(θ1, θ2) = c(ab) is an a-monotonic transform of R1(θ1, θ2) = bca since since
U(R1(θ1, θ2), a) = {a, b, c} ⊆ U(R1(θ1, θ2), a) = {a, b, c} and U(R1(θ1, θ2), a) = {c} ⊆
U(R1(θ1, θ2), a) = {b, c}. Finally, R2(θ1, θ2) = c(ab) is an a-reshuffl ing of R2(θ1, θ2) = c(ab)
since both preferences coincide.
Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ1, θ2

}
a sequence of individual types.

Note that, I(S) = {1, 2} and tS = 2. We claim that the passage from θ to θ′ through
S is not a-satisfactory. To show it, observe that for h = 1, Rhi(S,h) (θ, S) is not an a-
monotonic transform of Rh−1i(S,h) (θ, S). By definition, R0i(S,1) (θ, S) = R1(θ) andR1i(S,1) (θ, S) =

R1(θ1, θ2). Moreover, R1(θ1, θ2) = c(ab) is not an a-monotonic transform of R1(θ) = acb
since U(R1(θ1, θ2), a) = {a, b, c} " U(R1(θ), a) = {a} (in fact, U(R1(θ1, θ2), a) = {c} "
U(R1(θ), a) = ∅).

Armed with our previous definitions we now identify our first restriction on environments.

Definition 5 We say that an environment (Θ, R) is knit if for any two pairs formed by an
alternative and a type profile each, (x, θ), (z, θ̃) ∈ A×Θ, θ 6= θ̃, x 6= z, there exist θ′ ∈ Θ and
sequences of types S and S̃, such that the passage from θ to θ′ through S is x-satisfactory
and the passage from θ̃ to θ′ through S̃ is z-satisfactory.

Two important remarks are in order. First, whether or not an environment is knit will
depend on the way how the preference function determines what sequences are considered
to be satisfactory. Moreover, when going through proofs of knitness (see Remark 1, for
example) the reader can observe that for some pairs formed by an alternative and a type
profile each, there exist several type profiles and passages that work. Knitness requires only
the existence of one such way. The following remark provides an example of how to check
whether an environment is knit.

Remark 1 The environment in Example 1 is knit.

To check that the environment (Θ, R) where Θ =
{

(θ1, θ2), (θ1, θ2), (θ1, θ2), (θ1, θ2)
}
is knit,

we must prove that all pairs of alternatives and types can be connected through satisfactory
sequences. To do that, we will show how to choose the appropriate ones for two specific
cases, and then argue that all others can be reduced essentially to one of the patterns we
shall follow.
Case 1. (x, θ) = (a, (θ1, θ2)) and (z, θ̃) = (b, (θ1, θ2)).
Define θ′ = θ̃ = (θ1, θ2), S =

{
θ2, θ1, θ2

}
(thus, I(S) = {2, 1, 2} and tS = 3), S̃ = ∅ (thus,

I(S̃) = ∅ and tS̃ = 0). Note that since θ′ = θ̃, then θ̃ trivially leads to θ′ through S̃ and
this passage from θ̃ to θ′ is b-satisfactory. We need to show that θ leads to θ′ through S
and the passage is a-satisfactory. For that we need to observe using Table 1 that the three
(tS) following facts hold: R2(θ1, θ2) is an a-monotonic transform of R2(θ1, θ2). Moreover,
R1(θ1, θ2) is an a-monotonic transform of R1(θ1, θ2). Finally, R2(θ1, θ2) is an a-reshuffl ing of
R2(θ1, θ2).

7



Case 2. (x, θ) = (c, (θ1, θ2)) and (z, θ̃) = (a, (θ1, θ2)).
Define θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus, I(S) = {1, 2} and tS = 2), S̃ =

{
θ1
}
(thus,

I(S̃) = {1} and tS̃ = 1). As above, first we need to show that θ leads to θ′ through S and
the passage is a-satisfactory. For that we need to observe using Table 1 that the two (tS)
following facts hold: R1(θ1, θ2) is a c-monotonic transform of R1(θ1, θ2). Moreover, R2(θ1, θ2)
is a c-reshuffl ing of R2(θ1, θ2).
Second, we need to show that θ̃ leads to θ′ through S̃ and the passage is a-satisfactory.
For that we need to observe using the table that R1(θ1, θ2) is an a-monotonic transform of
R1(θ1, θ2).
To finish the proof of knitness we should consider all remaining combinations of (x, θ),
(z, θ̃) ∈ A×Θ. Observe that each one of those cases can be embedded in either Case G1 or
Case G2 below, which generalize Cases 1 and 2, respectively.
Case G1. (x, θ) and (z, θ̃) such that x ∈ {a, b}.
Case G2. (x, θ) and (z, θ̃) such that x = c.
To prove knitness for Case G1, consider θ′ = θ̃, S̃ = ∅, and S will depend on θ and
θ̃. Similarly, to prove knitness for Case G2, consider θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus,

I(S) = {1, 2} and tS = 2), and S̃ will depend on θ and θ̃.

We shall now define partially knit environments. This condition is less demanding that
knitness because it only requires to connect some pairs of type profiles, and only for some
pairs of reference alternatives. Whether or not an environment is partially knit will again
depend on how the preference function determines what sequences are satisfactory, but now
the pairs of type profiles and alternatives involved will be more limited.
For any θ ∈ Θ and x, z ∈ A, let C(θ, z, x) = {i ∈ N : zRi(θ)x} and C(θ, z, x) = {j ∈ N :

zPj(θ)x}.

Definition 6 We say that an environment (Θ, R) is partially knit if for any two pairs
formed by an alternative and a type profile each, (x, θ), (z, θ̃) ∈ A × Θ, θ 6= θ̃, such that
C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2, and θ̃j = θj for any j ∈ N\C(θ, z, x), then there exist θ′ ∈ Θ

and sequences of types S and S̃, such that the passage from θ to θ′ through S is x-satisfactory
and the passage from θ̃ to θ′ through S̃ is z-satisfactory.

Clearly, if an environment is knit it is also partially knit. Observe that since C(θ, z, x) 6=
∅, then z 6= x.
Notice that, here again, partial knitness is satisfied as long as there is one satisfactory

passage for each relevant pair of alternatives and profiles.
A number of consequences of our definitions for private values environments follow. We

start by the remark that essentially no such environment will be knit. The proof of Propo-
sition 1 is found in Appendix A.

Proposition 1 No private values environment (Θ, R) for which there exist θi, θ̃i ∈ Θi such
that Ri(θi) 6= Ri(θ̃i) for some i ∈ N can be knit.

8



Propositions 2, 3, and 4 discuss the pertinence of our new properties for several important
private values environments where the preference function is biunivocal.
We begin by the universal domain of strict preferences. The proof of Proposition 2 is

found in Appendix A.

Proposition 2 The set of all strict preferences in the classical social choice problem is
partially knit.

Another interesting case is provided by the set of strict single-peaked preferences on a
finite set of alternatives. We know that it is not knit by Proposition 1, but as stated in
Proposition 3 and proven in Appendix A, it is partially knit.

Proposition 3 The set of all strict single-peaked preferences on a finite set of alternatives
in the classical social choice problem is partially knit.

In the housing problem, agents’admissible preferences over their individual assignment
are strict. And, again, they define a partially knit environment, as stated in Proposition 4
and proven in Appendix A.

Proposition 4 The set of preferences in the housing problem is partially knit.7

Until now, we have concentrated on the properties of potential environments. We now
turn attention to some properties of the mechanisms themselves.
We first look at incentives. Ex post incentive compatibility requires, for all agents to

prefer truthtelling at a given type profile θ, if all the other agents also report truthfully.8

Therefore, truthful revelation is required to be a Nash equilibrium.

Definition 7 Let (Θ, R) be an environment. A mechanism f is ex post incentive com-
patible in (Θ, R) if, for all agent i ∈ N , θ ∈ Θ, and θ′i ∈ Θi, f(θ)Ri(θ)f(θ′i, θN\{i}).

9

We say that an agent i ∈ N can ex post profitably deviate under mechanism f at θ ∈ Θ if
there exists θ′i ∈ Θi such that f(θ′i, θN\{i})Pi(θ)f(θ). Note that ex post incentive compatibility
requires that no agent can profitably deviate at any type profile.
In addition to individuals, coalitions of agents may also jointly deviate if they find it

profitable. This leads us to propose the following definition.

Definition 8 Let (Θ, R) be an environment. We say that a coalition C ⊆ N can ex post
profitably deviate under mechanism f at θ ∈ Θ if there exists θ′C ∈ ×i∈CΘi such that
for all agent i ∈ C, f(θ′C , θN\C)Ri(θ)f(θ) and for some j ∈ C, f(θ′C , θN\C)Pj(θ)f(θ). A
mechanism f is ex post group incentive compatible in (Θ, R) if no coalition of agents
can ex post profitably deviate at any type profile.10

7The same result would hold in the one-to-one matching problem where admissible preferences over
individual assignments are strict and different for each agent: those of each woman are defined on all men
and on herself, while those of each man are defined on all women and himself.

8This property is called uniform incentive compatibility by Holmstrom and Myerson (1983). See also
Bergemann and Morris (2005).

9From now on we omit reference to the environments on properties of f when no confusion arises.
10Notice that we allow for some agents to participate in the profitable deviation without strictly gaining

from it. Moreover, we also allow for some agents not to change their types. That facilitates the deviation
by groups. Therefore, our requirement of ex post group incentive compatibility is strong.
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Finally, we may require our mechanisms to satisfy a condition that we call respectfulness.
This is a condition similar to those imposed in the literature when dealing with environments
where agents’preferences allow for non-degenerate indifference classes (See Thomson, 2016).
Relative to other technical conditions of the same sort, ours is among the weakest, because it
only applies to some limited changes in type profiles, and has no bite in some important cases
(for example, in public good economies where agents’preferences are strict). The condition
essentially demands that for those specific changes in type profiles, no agent should affect
the outcome (for her and for others) unless she changes her level of satisfaction.

Definition 9 Let (Θ, R) be an environment. A mechanism f is (outcome) respectful in
(Θ, R) if

f(θ)Ii(θ)f(θ′i, θN\{i}) implies f(θ) = f(θ′i, θN\{i}),

for each i ∈ N , θ ∈ Θ, and θ′i ∈ Θi such that Ri(θ′i, θN\{i}) is a f(θ)-monotonic transform of
Ri(θ).11

For short, we call this condition respectfulness.
The following two Paretian notions of effi ciency will be used in our discussion of results.

Definition 10 Let (Θ, R) be an environment. A mechanism f is Pareto effi cient on
the range in (Θ, R) if for all θ ∈ Θ, there is no alternative x in the range of f such that
xRi(θ)f(θ) for all i ∈ N and xPj(θ)f(θ) for some j ∈ N . If, in addition, the mechanism is
onto A we say that it is fully effi cient in (Θ, R).

Notice that ex post group incentive compatibility implies Pareto effi ciency on the range,
since otherwise the grand coalition could profitably deviate.

3 The results

Our first result shows that only constant mechanisms can be ex post incentive compatible
and respectful in knit environments. Before we prove the theorem, let’s comment on its
importance and implications. The conclusion of Theorem 1 is very strong, and it is in the
same vein than the one in Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006) obtain
under completely different premises. The theorem also restricts attention to mechanisms
that are respectful, but note that the latter requirement does not always have bite: It is
irrelevant when the environment is strict, that is, when the preferences of all agents under
all type profiles are strict (see Corollary 1 below). Also observe that since we work with
functions, our environments are separable, in the sense of Bergemann and Morris (2005)
who also show (see their Proposition 2) that in this case only rules that are ex post incentive
compatible could be interim incentive compatible. Therefore, our theorem also applies for
the latter weaker requirement, whatever the priors of agents might be, and with no need to
be specific about them.
11Respectfulness is an analogue condition to the one we use in Barberà, Berga, and Moreno (2016) but

requiring here invariance in outcomes instead of indifferences in outcomes. Examples of mechanisms satisfying
respectfulness are provided in Section 4. An example of a mechanism violating it is the Gale-Shapley
mechanism (see Barberà, Berga, and Moreno, 2016).
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Theorem 1 Let (Θ, R) be a knit environment and f : Θ → A be a mechanism. If f is ex
post incentive compatible and respectful, then f is constant.12

Corollary 1 Let (Θ, R) be a strict knit environment and f : Θ→ A be a mechanism. If f
is ex post incentive compatible, then f is constant.

The proof of Corollary 1 is obtained using the first part in each step of the proof of
Theorem 1 where respectfulness is not used. Some standard notation is required for the
proof: For any x ∈ A and Ri ∈ R̃, L(Ri, x) = {y ∈ A : xPiy} is the strict lower contour set
of Ri at x and E(Ri, x) = {y ∈ A : yIix} is the indifference class of Ri at x.

Proof of Theorem 1. Let (Θ, R) be a knit environment and let f be an ex post incentive
compatible and respectful mechanism. Assume, by contradiction, that f was not constant.
Then, there will be x, z ∈ A, x 6= z such that x = f(θ) and z = f(θ̃) for some θ and θ̃
in Θ. Since (Θ, R) is knit, for the two pairs formed by an alternative and a type profile,
(x, θ) and (z, θ̃) ∈ A × Θ, there exist θ′ ∈ Θ and two sequences S = {θSi(S,1), ..., θSi(S,tS)},
S̃ = {θ̃S̃

i(S̃,1)
, ..., θ̃S̃

i(S̃,t
S̃
)
} such that the passage from θ to θ′ through S is x-satisfactory and

the passage from θ̃ to θ′ through S̃ is z-satisfactory.
Now, we will show the following:
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z.
Statements in (a) and (b) yield to a contradiction. By definition of the sequences S and S̃,
we know that mtS(θ, S) = mt

S̃(θ̃, S̃) = θ′. However, f(θ′) = f(mtS(θ, S)) = x by (a) while
f(θ′) = f(mt

S̃(θ̃, S̃)) = z by (b).
We prove (a) in steps, from h = 1 to h = tS. The proof of (b) is identical and omitted.
Step 1. Let h = 1. By Definition 4, R1i(S,1)(θ, S) is an x-monotonic transform ofR0i(S,1)(θ, S) =

Ri(S,1)(θ). (1)

Observe that f(m1(θ, S)) /∈ L
(
R1i(S,1)(θ, S), x

)
. (2)

(otherwise, if f(m1(θ, S)) ∈ L
(
R1i(S,1)(θ, S), x

)
, we would get a contradiction to ex post in-

centive compatibility since i(S, 1) would ex post profitably deviate under f at (θSi(S,1), (m
0(θ, S))N\{i(S,1)})

via θi(S,1)).

By (1) and (2) we have that f(m1(θ, S)) /∈ L
(
R0i(S,1)(θ, S), x

)
. (3)

By ex post incentive compatibility of f , f(m1(θ, S)) /∈ U
(
R0i(S,1)(θ, S), x

)
. (4)

(otherwise, if f(m1(θ, S)) ∈ U
(
R0i(S,1)(θ, S), x

)
, f(m1(θ, S))P 0i(S,1)(θ)x contradicting ex post

incentive compatibility since i(S, 1) would ex post profitably deviate under f at θ via θSi(S,1)).

Thus, by (3) and (4) we have that f(m1(θ, S)) ∈ E
(
R0i(S,1)(θ, S), x

)
. (5)

Then, by respectfulness, we get that f(m1(θ, S)) = f(m0(θ, S)) = f(θ) = x which ends the

12In a companion paper Barberà, Berga, and Moreno (2018), we show that for the case of two alternatives at
stake, knitness is not only suffi cient for obtaining that ex post incentive compatible and respectful mechanisms
be constant, but it is also necessary.
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proof of (a) for h = 1.
Step h ∈ {2, ..., tS}. By repeating the same argument than in Step 1 on the recursive fact
that f(mh−1(θ, S)) = x, we obtain that f(mh(θ, S)) = f(mh−1(θ, S)) = x.

We now prove our second result, showing the equivalence between ex post individual and
group incentive compatibility in partially knit environments. This result has bite for both
private and interdependent values environments.

Theorem 2 Let (Θ, R) be a partially knit environment and f be a respectful mechanism.
Then, f is ex post incentive compatible if and only if f is ex post group incentive compatible.

Corollary 2 Let (Θ, R) be a strict partially knit environment and f be a mechanism. Then,
f is ex post incentive compatible if and only if f is ex post group incentive compatible.

Before we prove the theorem, let us discuss its content and implications.
A first consequence of ex post group incentive compatibility is Pareto effi ciency on the

mechanism’s range. Hence, the implications that having a good performance regarding
incentives may be compatible with effi ciency is an invitation to investigate those cases where
this may be a promising possibility.
Also observe that in private values cases where environments are partially knit (see

Propositions 2, 3, and 4, for example), the result in Theorem 2 admits a second reading. This
is because ex post incentive compatibility then becomes equivalent to strategy-proofness,13

since each agent i’s preferences depend on θ only through θi. For the same reason, ex post
group incentive compatibility becomes equivalent to strong group strategy-proofness. These
remarks lead us to the following corollary.

Corollary 3 Let (Θ, R) be a partially knit environment in private values and let f be a
respectful mechanism. Then, f is strategy proof if and only if f is strongly group strategy-
proof.

The equivalence between individual and group ex post incentive compatibility may hold
in rather vacuous ways, because there are cases where the only ex post incentive compatible
rules lack any interest. But there are other cases where there is a real possibility of making
these desiderata compatible in non-trivial ways.
Here are three relevant examples of mechanisms for which the result holds non-trivially

in private values environments. One of them is the family of social choice functions defined
on the set of all strict single-peaked preferences (see Moulin, 1980 and our Proposition 3).
The other case is provided by the top trading cycle mechanism for house allocation (see
Shapley and Scarf, 1974 and our Proposition 4). Finally, consider the large class of non-
trivial strategy-proof rules on the set of all strict preferences that one can define when only

13We say that a mechanism f is weakly group manipulable at θ ∈ Θ if there exist a coalition C ⊆ N and
θ′C ∈ ×i∈CΘi (θ′i 6= θi for any i ∈ C) such that f(θ′C , θ−C)Ri(θi)f(θ) for all i ∈ C and f(θ′C , θ−C)Pj(θj)f(θ)
for some j ∈ C. A mechanism f is strongly group strategy-proof in an environment (Θ, R) if f is not weakly
group manipulable at any θ ∈ Θ. When the condition is imposed only on singleton coalitions C = {i} , we
say that f is strategy-proof (also called dominant strategy incentive compatible). In words, strategy-proofnes
requires that all agents prefer truthtelling at a given type profile θ, whatever all the other agents report.
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two alternatives are at stake (see Barberà, Berga, and Moreno, 2012 and Manjunath 2012).
In all three cases we are dealing with partially knit private values environments where a type
for an agent can be identified with her preference relation, the mechanisms are individual and
strongly group strategy-proof, and by no means trivial. Also remark that for the case where
the mechanism has more than two alternatives on the range, only dictatorship is strategy-
proof on the universal set of preferences, by the Gibbard-Satterthwaite theorem (see Gibbard,
1973 and Satterthwaite, 1975). This is an example in which our Theorem 2 also applies,
since the universal set of preferences is partially knit and dictatorships are strongly group
strategy-proof, but we use it here as a warning sign that the implications of Theorem 2, as
already explained may or may not be of interest depending on the environments.14

Proof of Theorem 2. Let (Θ, R) be a partially knit environment and let f be a respectful
mechanism. By definition, ex post group incentive compatibility implies ex post incentive
compatibility. To prove the converse, suppose, by contradiction, that there exist θ ∈ Θ,
C ⊆ N , #C ≥ 2, θ̃C ∈ ×i∈CΘi such that for any agent i ∈ C, f(θ̃C , θN\C)Ri(θ)f(θ) and
f(θ̃C , θN\C)Pj(θ)f(θ) for some agent j ∈ C. Let z = f(θ̃C , θN\C) and x = f(θ). Note that
(i) z 6= x, (ii) C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2 since C ⊆ C(θ, z, x), and (iii) θ̃j = θj for any
j ∈ N\C(θ, z, x) again since C ⊆ C(θ, z, x).
Since (Θ, R) is partially knit and conditions in Definition 6 are satisfied, there exist θ′ ∈ Θ

and two sequences of types S = {θSi(S,1), ..., θSi(S,tS)}, S̃ = {θ̃S̃
i(S̃,1)

, ..., θ̃S̃
i(S̃,t

S̃
)
} such that the

passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to θ′ through S̃ is
z-satisfactory.
Although these sequences are not necessarily the same than the ones we used in the proof
of Theorem 1, from this point on, we can use the same reasoning as there, and show that
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z,
again leading to a contradiction. Adding the arguments we have already used in the proof
of Theorem 1 we would complete the one for the present theorem.

4 Applications

In this section we present examples of simple environments where our theorems apply.
These examples are inspired in our reading of several relevant papers in the literature.

They are framed in the language we have developed in our paper, and they allow us to clarify
several of the points we try to make all along.
Examples 2 and 3 refer to deliberative committees and are inspired by our reading of

Austen-Smith and Feddersen (2006), who build on the classical Condorcet jury problem and
add the possibility that agents share (true or false) information.

14Let us comment on the connection between our results and the Gibbard-Satterthwaite theorem. There
is no contradiction between our result in Theorem 1 that only constant mechanisms are strategy-proof and
that of the Gibbard-Satterthwaite theorem, since the universal set of preferences where the latter applies is
not knit, as shown in Proposition 1, and thus Theorem 1 does not apply.
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Examples 4 and 5 refer to house allocation problems and are this time inspired by the
analysis of Che, Kim, and Kojima (2015), regarding the existence of Pareto effi cient and
ex-post incentive compatible mechanisms in that context.
Examples 6 and 7 refer to auctions and are inspired by some of the models in Dasgupta

and Maskin (2000) and Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006).
Until now we have analyzed our environments in abstract terms, and have not discussed

the origin of the preference function, which indicates what is the relevant preferences profile
associated to each profile of types. In Example 1 adapted from Example 1 in Bergemann and
Morris (2005), the preference function is proposed without any specific explanation regarding
where this function comes from. Indeed, this is common to different general discussions of the
issues we address here, and digging on the underlying reasons to predicate a given preference
function is immaterial for the validity of our theorems. Notice, however, that whether or
not an environment is knit, or partially knit, will depend on the preference function that
applies in each case, for environments that are otherwise identical. Hence, it is interesting
to know, for each application, whether or not the underlying phenomenon we want to model
is adequately represented by a specific preference function.
In most applications, authors endow agents with a general utility function15 that may

depend on variables that reflect the agent’s type and, in the interdependent values case, on
other variables that correspond to the types of the rest of agents. Our general framework has
departed from this formulation, since we stick to a purely ordinal framework and avoid the use
of utility functions. This has allowed us to define restrictions on environment that transcend
the details of any particular functional form and avoid questions of representability. Since
in this section we want to get closer to well studied issues, we also become precise about the
form of preference functions, based on the interpretation of each model. That will allow us
to show that the choice of preference functions crucially determines whether an environment
of application is knit, or partially knit, and has implications on the possibilities of design.

4.1 Deliberative Juries

Example 2. A three-person jury N = {1, 2, 3} must decide over two alternatives: whether
to acquit (A) or to convict (C) a defendant under a given mechanism. The defendant is
either guilty (g) or innocent (i). Each juror j gets a signal sj = g or sj = i.
Jurors’s preferences arise from combining the different signals they obtain from the de-

liberation, according to their bias in favor of acquittal in view of their observed signals and
of those declared by others. In this example, jurors are either high-biased (h) or low-biased
(l). High-biased jurors (h) prefer to convict if and only if all other jurors declare the guilty
signal and they have also observed it (s = (g, g, g)), whereas low-biased ones (l) prefer to
convict if and only if they have observed the guilty signal or at least one other committee
member has declared it (s 6= (i, i, i)).
Each juror j’s type is θj= (bj, sj) ∈ Θj = B×S where B = {h, l} and S = {g, i}. A type

profile θ ∈ Θ = (B × S)n. Let CA denote the preference to convict rather than to acquit
and AC be the converse order. The preference function is defined such that for each type

15The use of utility functions that represent the preferences of expected utility maximizers is especially
useful to analyze incentive compatibility notions that involve uncertainty regarding the types.
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profile θ ∈ Θ and for each juror j ∈ N , Rj(θ) is as follows:

Rj
(
(bj, sj) , θN\{j}

)
=

{
CA if either bj = h and s = (g, g, g) or bj = l and s 6= (i, i, i),
AC, otherwise.

}
The environment (Θ, R) in this example is knit. Hence we know by Theorem 1 that

it will be impossible to design non-constant, ex post incentive compatible, and respectful
mechanisms in such framework.
The proof that the environment is knit is in Proposition 5 in Appendix B. Here we simply

provide the reader with some hints on the techniques that we use to check for our restrictions
in this example and subsequent ones.16

To check knitness for a particular pair of types and alternatives, (A, θ) and (C, θ̃), we
must show that there are passages to a third type profile θ′ which are A-satisfactory from θ
and C-satisfactory from θ̃, respectively.
Consider the following three type profiles, θ = (θ1, θ2, θ3) = ((l, g), (h, g), (l, i)), θ̃ =

(θ̃1, θ̃2, θ̃3) = ((l, g), (h, g), (l, g)) and θ′ = (θ′1, θ
′
2, θ
′
3) = ((l, i), (h, i), (l, i)). The profiles of

preferences they induce are shown in Table 2.

R(θ) = R((l, g), (h, g), (l, i)) R(θ̃) = R((l, g), (h, g), (l, g)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

A
C

C
A

C
A

C
A

C
A

A
C

A
C

A
C

Table 2 : Agents’preferences induced by θ, θ̃, and θ′, respectively.

As shown in Table 3, it is possible to sequentially move from θ to θ′ by successively
changing, one by one, the type of the agents as follows. First, agent 1 from (l, g) to (h, i),
then agent 2 from (h, g) to (h, i) and finally agent 1 from (h, i) to (l, i). According to our
notation, I(S) = {1, 2, 1}. Likewise, as shown in Table 4, we can move from θ̃ to θ′ by
successively changing, one by one, the type of some agents. First, agent 1, then agent 3 and
finally agent 2, all from signal g to i, while their b’s remain fixed. That is, I(S̃) = {1, 3, 2}.
In Table 3, alternative A either does not change its relative position (an A-reshuffl ing), or
improves it (an A-monotonic transform). Similarly, in Table 4, the same requirements are
satisfied but this time for alternative C.

R(θ) = R((l, g), (h, g), (l, i)) R((h, i), (h, g), (l, i)) R((h, i), (h, i), (l, i)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

A
C

C
A

A
C

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 3 : Induced agents’preferences given the specified type changes from θ to θ′.

16The reader that finds the following argument useful to better understand our condition may also find a
similar one for partially knit in the text preceding the proof of Proposition 6 in Appendix B.
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R(θ̃) = R((l, g), (h, g), (l, g)) R((l, i), (h, g), (l, g)) R((l, i), (h, g), (l, i)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

C
A

C
A

C
A

A
C

C
A

C
A

A
C

C
A

A
C

A
C

A
C

Table 4 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

Example 3. Consider the framework of Example 2 and change the jurors’attitude to convict
versus acquit as follows. Each juror may now be either unswerving or median. Unswerving
jurors (u) prefer to convict if and only if they have observed the guilty sign and have also
received such a sign from at least another juror. Median jurors (m) again prefer to convict
under the same circumstances but also if they receive two guilty signals from other jurors.
For instance, if juror 1 is unswerving she will prefer to convict if either (g, g, g), (g, g, i),

or (g, i, g) but if juror 2 is unswerving she will convict if either (g, g, g), (g, g, i), or (i, g, g)).
Yet being median is the same for both agents, they will prefer to convict if either (g, g, g),
(g, g, i), (g, i, g), or (i, g, g).
Each juror j’s type is θj= (bj, sj) ∈ Θj = B × S where B = {u,m} and S = {g, i}. A

type profile θ ∈ Θ = (B × S)n. The preference function is defined such that for each type
profile θ and for each juror j ∈ N , Rj(θ) is as follows:

Rj
(
(bj, sj) , θN\{j}

)
=


CA if either bj = u, sj = g and sl = g for some l 6= j,

or bj = m and # {l ∈ N : sl = g} ≥ 2, and
AC otherwise.


This environment (Θ, R) is partially knit (see Proposition 6 in Appendix B) but not knit.

To show that it is not knit, we present a family of mechanisms, the quota rules, that are
non-constant, respectful, and ex post incentive compatible in (Θ, R).17

Let q ∈ {1, 2, 3}. A voting by quota q mechanism, f , chooses C for a type profile θ if
and only if at least q agents have induced preferences from θ such that C is preferred to A.18

Formally, for each type profile θ = (b, s) ∈ Θ,

f(θ) = C if and only if # {i ∈ N : Ri(θ) = CA} ≥ q.

In Table 5 below we describe all possible results of voting by quota for different values
of q in Example 3. We have four matrices, one for each type of agent 3. In the rows of
each matrix we write the four types of agent 1 and in the columns the four types of agent 2.
In each cell, we write each agent’s best alternative according to their preferences at a given
type profile, followed by the outcome of a quota mechanism. When two outcomes appear in
a cell, the one in the left stands for the outcome of voting by quota 3 and the right one is
the outcome for both quota 1 and 2, which in this example are always the same.

17Note that respectfulness is trivially satisfied in these environments where preferences are strict and
alternatives have no private component.
18See Austen-Smith and Feddersen (2006) and Barberà and Jackson (2004) for papers where these rules

are analized.
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Given Table 5, it is easy to check that these rules are ex post incentive compatible. In
addition, they also satisfy anonymity.
Now, Theorem 2 will ensure that these and other mechanisms that we may know to be

ex post incentive compatible for our example will also be ex post group incentive compatible
(therefore, Pareto effi cient on the range) since the environment is partially knit. Thus,
full effi ciency is satisfied in this example because the range of the mechanism is the set of
alternatives.

θ3 = (m, i) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A AAA A AAA A AAA A
θ1 = (m, g) AAA A CCC C AAA A CCC C
θ1 = (u, i) AAA A AAA A AAA A AAA A
θ1 = (u, g) AAA A CCC C AAA A CCC C
θ3 = (u, i) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A AAA A AAA A AAA A
θ1 = (m, g) AAA A CCA A/C AAA A CCA A/C
θ1 = (u, i) AAA A AAA A AAA A AAA A
θ1 = (u, g) AAA A CCA A/C AAA A CCA A/C

θ3 = (m, g) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A CCC C AAA A CCC C
θ1 = (m, g) CCC C CCC C CAC A/C CCC C
θ1 = (u, i) AAA A ACC A/C AAA A ACC A/C
θ1 = (u, g) CCC C CCC C CAC A/C CCC C
θ3 = (u, g)) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A CCC C AAA A CCC C
θ1 = (m, g) CCC C CCC C CAC A/C CCC C
θ1 = (u, i) AAA A ACC A/C AAA A ACC A/C
θ1 = (u, g) CCC C CCC C CAC A/C CCC C

Table 5. Each agent’s best alternative and outcomes of all voting by quota mechanisms.

4.2 Private goods without money

Example 4. Let N = {1, 2} be a set of agents, O = {a, c} be a set of objects. Each
agent must be assigned one and only one object. Thus, the set of alternatives is A = {x =
(a, c), z = (c, a)}, where the first component refers to the object that agent 1 gets. There is
no money in this economy.
The type θi ∈ Θi of each agent i is given by a signal si in Θi = [0, 1]. Each individual

i ∈ N is endowed with a given auxiliary function gi : Θ → R increasing in both signals.19

19Che, Kim, and Kojima (2015) also impose the following property which they call the single-crossing
property : ∂ui(θ)

∂si
>

∂uj(θ)
∂si

for any θ ∈ Θ. However, as they already mention, this condition is not required
for the impossibility result to hold.
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The preference function R is such that for each agent i ∈ N and for each type profile
θ ∈ Θ = [0, 1]× [0, 1], Ri(θ) is as follows: x is at least as good as z if and only if gi(θ) ≥ 0.
The environment in Example 4 is knit (see Proposition 7 in Appendix B). Therefore by

Theorem 1 only constant mechanisms can be ex post incentive compatible and respectful in
this context.

Example 5. We consider the framework of Example 4, except that we change agents’
preference functions to be induced by g1(s) = min

(
median

{
1
4
, s1, s1, s2

})
− 1

4
and g2(s) =

min
(
median

{
1
4
, s2, s2, s1

})
− 1

4
, respectively. That is, for each agent i ∈ N and for each

type profile θ ∈ Θ, Ri(θ) is as follows: x is at least as good as z if and only if gi(s) ≥ 0.
The main but significant difference between this example and the preceding one is that

now the functions gi are just weakly increasing.
Like in Example 3 above, the environment in this example is partially knit (see Propo-

sition 8 in Appendix B) but not knit. To prove it, we consider the veto mechanisms defined
below. Before introducing them we need the following definition: consider a partition of the
signal (type) space and a useful graphical representation of it which is similar to the one
defined in Che, Kim, and Kojima (2015).
Let {Sac, Sca, Saa, Scc, S0} be the partition of Θ where:

S0 is the set of signal profiles for which both agents are indifferent between a and c,
Sac is the set of signal profiles for which agent 1 prefers a to c, agent 2 prefers c to a, and
the preferences are strict for at least one agent,
Sca is equally defined after changing the roles of c and a,
Saa is the set of signal profiles for which both agents prefer a to c, and
Scc is equally defined after changing the roles of c and a.
In terms of alternatives, when the signals are in Sac both agents prefer x to z, when they

are in Sca both prefer z to x, in Saa, 1 prefers x over z and 2 prefers z over x, in Scc, 1 prefers
z over x and 2 prefers x over z, and in S0 both are indifferent between x and z.
Now we say that a mechanism fveto x is a veto rule for x if for any type profile the outcome

is agent 1’s best alternative when it is unique, and it is agent 2’s best alternative otherwise.
Formally, for θ ∈ Θ = [0, 1]× [0, 1],

fveto x(θ) =

{
x = (a, c) if θ ∈ Sca, and

z = (c, a) if θ ∈ Saa ∪ Sac ∪ Scc ∪ S0
}
.

In view of Theorem 1 the existence of these non-constant, ex post incentive compatible,
and respectful mechanisms implies that the environment is no longer knit (in Lemma 1,
Appendix B we show that veto rules satisfy the three properties). Now, Theorem 2 will
ensure that these and other mechanisms that we may know to be ex post incentive compatible
for our example will also be ex post group incentive compatible (therefore, Pareto effi cient
on the range) since the environment is partially knit. Thus, full effi ciency is obtained in this
example since the range is the whole set of alternatives.
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4.3 Auctions

There is one unit of an indivisible good to be auctioned. Let N be the set of buyers (agents).
An alternative in this model tells us which single agent, if any, gets the good and what
positive price she pays for it, meaning then that the rest of agents do not get the good and
pay zero. If no agent gets the good, no one pays anything. Formally, an alternative x is
written as x = (x1, ...xn) ∈ A = ({0, 1} × R+)n, with xi = (ai, pi) where ai = 1 and pi > 0 if
and only if agent i gets the good, and pl = 0 for all agents l that do not get it.
We assume that agents’preferences are selfish. Agents only care about whether or not

they are awarded the good and, if so, about how much they must pay for it. Therefore,
we can define their preferences on the part of the alternative that concerns them and then
naturally extend such preferences to alternatives.
The type θi of each agent i is given by a signal, si ∈ Θi ⊆ R (where Θi has a minimum).

Each individual i ∈ N is endowed with a given auxiliary function gi : Θ→ R non-decreasing
in her own signal si. The preference function R is such that for each agent i ∈ N and for
each type profile θ ∈ Θ, Ri(θ) is as follows:
(1) (1, pi)Pi(s)(1, qi) for all qi > pi (agent i strictly prefers paying less than more), and
(2) (1, gi(s))Ii(s)(0, 0) (agent i is indifferent between not getting the good and paying

nothing or receiving the good and paying gi(s)).
Notice that gi(s) is buyer i’s valuation of the good, gi has a minimum in Θi, and that

the preference relation of i is fully determined once we know which alternative (1, gi(s)) is
indifferent to (0, 0).
We assume all along this section that for each agent i, gi satisfies the following standard

condition in the literature: (a) gi is non-decreasing in si.

Example 6. Let us assume that, in addition to condition (a), for any agent i, the evaluation
will be the lowest possible if all other agents but i receive the lowest signal. This is formally
expressed by condition: (b) gi(s) = gi(s) for s such that sj = sj for all j ∈ N\{i}.20

Under conditions (a) and (b), the environment in this example is knit21 (see Proposition
9 in Appendix B). Hence, again by Theorem 1 we know that it will be impossible to design
non-constant, ex post incentive compatible and respectful mechanisms in such framework.
This negative result parallels those in Examples 2 and 5 above, where Theorem 1 also applies.
One could wonder whether it would be possible to find non-constant mechanisms by

dropping the requirement of respectfulness. We do not have a full answer to this question,
but the answer is negative if we substitute condition (a) by the stronger condition (c) gi is

20An example of a gi function satisfying these properties is presented by Jehiel, Meyer-Ter-Vehn,
Moldovanu, and Zame (2006). In our notation, consider the case where gi(s) = βi + α

∏
j∈N

sj , βi ∈ [0, 1],

α > 0 and the signal space is Si = [0, 1]. Note that by fixing βi and α, we have a unique preference formation
rule for each agent.
21Our examples are chosen to illustrate our points, and the readers may want to create additional ones or

to use them for comparison with alternative results. Take, for instance, the function gi(s) = max{s1, ..., sn},
that is used in Ivanov, Levin, and Niederle (2010), for other purposes. Such auxiliary function gi satisfies
condition (a) but not (b), and it could be used to define a knit (hence, also partially knit) environment.
Since our purpose is only to provide some examples, we leave the possibility of constructing new ones based
on this gi to the interested readers.
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strictly increasing in sj for all j ∈ N , and the requirement that the good is always allocated.
(See Proposition 10 in Appendix B.)
Now, Example 7 and our subsequent remarks will explore the positive consequences of

apparently small changes in the preference function.

Example 7. For simplicity, let N = {1, 2}, Θi = {0, 1} for all i ∈ N and l,m, h ∈ R+
with 0 = l < m < h. The agent’s preference function is defined as in the general framework
but will now be based on a different auxiliary function that takes three possible values, low,
medium and high.
More formally,

gi(s) =


l if si = 0
m if si = 1 and sj = 1,
h if si = 1 and sj = 0.

Observe that for each agent i, gi satisfies (a) and the following condition:
(d) gi is non-increasing in sj, for all j ∈ N\{i}.
Condition (d), in contrast to the cases encompassed in Proposition 10 and to some cases

in Example 6, establishes that the valuation of the good by agent i depends negatively on
other agents’signals. Note also that the function gi in Example 7 does not satisfy condition
(c).
Now, we assert that the environment in this example is not knit, but is partially knit (see

Proposition 11 in Appendix B). Therefore, we can apply Theorem 2 and conclude that any
ex post incentive compatible and respectful mechanism on that environment will also be ex
post group incentive compatible, and therefore, Pareto effi cient on the range.
In view of Theorem 1, to prove that is not knit, it is enough to show that the environment

admits a non-constant, ex post incentive compatible, and respectful mechanism. Here is such
a mechanism.22 Let l < p < m and l < p′ < m. Let fp,p′ be such that no agent gets the
good if both signals are 0, agent 1 gets the good and pays p if her signal is 1, and agent 2
gets the good and pays p′, otherwise. Formally, for θ ∈ Θ = {0, 1} × {0, 1},

fp,p′(θ) =


((0, 0), (0, 0)) if s1 = s2 = 0,
((1, p), (0, 0)) if s1 = 1, and

((0, 0), (1, p′)) if s1 = 0, s2 = 1.


Let us complete the discussion of this and related examples with some additional com-

ments. Example 7 provides a scenario where to apply Theorem 2, which is based on the
assumption that changes in some agent’s signal induce reverse effects in the preferences of
the different participants in the auction. While we can think of environments and signals
where this can be the case, the assumption that prevails in the literature on auctions is
that all agents respond in the same direction to changes in some agent’s signal. Led by this
observation, we offer the reader the following additional remark (that is formally justified in
Appendix B).

22In Lemma 4 in Appendix B we show that fp,p′ is ex post incentive compatible and respectful defined on
the environment (Θ, R) in Example 7.
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Remark 2 If we just modify Example 7 and assume that all agents’preferences respond in
the same way positively to changes in signals, we can prove the existence in such setting of
a mechanism that is respectful, and individually but not group ex post incentive compatible.
Hence, this new specification leads to environments that are not partially knit.

5 Discussion

In this paper we have emphasized the crucial role of environments, that is, combinations of
a set of types and a preference function, in determining whether or not satisfactory ex post
incentive compatible mechanisms can be designed.
Our classification of environments is not based on specific assumptions about preferences,

or the structure of the space of alternatives, or other considerations that end up determining
what combinations of types are admissible in specific applications. Rather, we have extracted
from different possible special cases what we think are crucial aspects that distinguish some
environments from others. These characteristics refer to how different type profiles are
interconnected within a given set by means of the preference function.
We model the preferences of agents as binary relations, and conduct our analysis in

ordinal terms.
Our conditions do not refer specifically to the structure of the set of types, or to its

dimensionality. Since the distinction between one-dimensional and multidimensional signals
is often seen as being determinant for the possibility or impossibility of designing effi cient
mechanisms with good incentive properties, our results suggest that this criterion, however
important, needs not always be determinant.
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6 Appendix A

In this appendix we prove propositions stated in Section 2.

Proof of Proposition 1. Let i ∈ N and θi, θ̃i ∈ Θi, θi 6= θ̃i be such that Ri(θi) 6= Ri(θ̃i).
That is, Ri(θi, θN\{i}) 6= Ri(θ̃i, θN\{i}) for all θN\{i} ∈ ×j∈N\{i}Θj since (Θ, R) is a private
values environment. Then, there will be a pair of alternatives, say x and z, such that xPi(θi)z
and zRi(θ̃i)x (otherwise, for θi, θ̃i ∈ Θi, Ri(θi) = Ri(θ̃i)). To show that the set of types Θ

is not knit, we prove that for the two pairs (x, (θi, θN\{i})), (z, (θ̃i, θN\{i})), and whatever
θN\{i}, there does not exist any θ′, S, and S̃ such that the passage from θ to θ′ through
S be x-satisfactory and the passage from θ̃ to θ′ through S̃ be z-satisfactory. We prove
it by contradiction. Suppose otherwise that there exist θ∗, S∗, S̃∗, such that the passages{
mh(θ, S∗)

}tS∗
h=0

and
{
mh(θ, S̃∗)

}t
S̃∗

h=0
from θ to θ∗ through S∗ and θ̃ to θ∗ through S̃∗ are x

and z-satisfactory, respectively.
Since we are in a private values environment, changes in the type of agent j never affect
the induced preferences of other agents, in particular never affect i’s induced preferences if
j 6= i. Moreover, we know that xPi(θi, θN\{i})z and zRi(θ̃i, θN\{i})x. These two observations
imply that agent i must belong to I(S∗) ∪ I(S̃∗). That is, i will appear in at least one of
these two sequences.
We concentrate on the steps of the passage where agent i changes her type and we show
that there is no θ∗ compatible with x-satisfactory and z-satisfactory passages from θ to θ∗

and from θ̃ to θ∗.
Without loss of generality, by the remark just after Definition 4, we can assume that all
types of agent i in S∗ and S̃∗ appear in the first positions in these sequences. Let’s define
IS∗,i ≡ {h ∈ {1, 2, ..., iS∗} : i(S∗, h) = i} and IS̃∗,i =

{
h ∈

{
1, 2, ..., iS̃∗

}
: i(S̃∗, h) = i

}
.

Take 1 ∈ IS∗,i. Since R1i (θ, S∗) is an x-monotonic transform of Ri(θi, θN\{i}), we have that
xPi(m

1
i (θ, S

∗))z. By repeating the same argument for each h ∈ IS∗,i we finally obtain that
xPi(m

iS∗
i (θ, S∗))z where miS∗

i (θ, S∗) = θ∗i .
Now, take 1 ∈ IS̃∗,i. Since R1i (θ̃∗, S̃∗) is a z-monotonic transform of Ri(θ̃∗i , , θN\{i}), we have

that zRi(m1
i (θ̃
∗, S̃∗))x. By repeating the same argument for each h ∈ IS̃∗,i we finally obtain

that zRi(m
i
S̃∗
i (θ, S̃∗))z where m

i
S̃∗
i (θ, S̃∗) = θ∗i .

As mentioned above, changes in types of agents different from i will not change agent i’s
preferences. Thus, we have obtained the desired contradiction. On the one hand that
xPi(θ

∗)z and on the other hand, that zRi(θ∗)x.

Proof of Proposition 2. Two relevant observations: Remember that types are preferences,
in that case, that is, θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes in j’s preferences
do not affect i’s preferences if i 6= j.
Let U denote the universal set of strict preferences in the classical social choice problem.
Thus, Ri = U . To check for partial knitness , take any (x,R), (z, R̃) ∈ A × Un such that
C(R, z, x) = C(R, z, x) 6= ∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x). With-
out loss of generality, let C(R, z, x) = {1, 2, ..., c} where c denotes its cardinality. Construct
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S, S̃ and R′ satisfying the condition in partially knitness.
We shall denote, for each Ri ∈ U , let Rzi be the preferences obtained by lifting z to the first
position and keep the relative position of all other alternatives.
Now, start from R and define S = {Rz1, Rz2, ..., Rzc} where tS = c. Note that for each
h ∈ {1, ..., c}, Rh(R, S) ∈ Un and Rhi (R, S) = Rzi ∈ U is an x-reshuffl ing of i’s previous
preferences Ri. Then, R′ = Rc(R, S) = Rz ∈ Un.
Now, start from R̃ and define S̃ =

{
R̃z1, R̃

z
2, ..., R̃

z
c , R

z
1, R

z
2, ..., R

z
c

}
where tS̃ = 2c. For each

h ∈ {1, ..., c}, Rhi (R̃, S̃) = R̃zi is a z-monotonic transform or a z-reshuffl ing (if z was already
the top) of i’s previous preferences R̃i, and for h ∈ {c + 1, ..., 2c}, Rhi (R̃, S̃) = Rzi ∈ U is a
z-reshuffl ing of i’s previous preferences R̃zi Then, R

′ = R2c(R̃, S̃) = Rz.

Proof of Proposition 3. The same two observations as in the proof of Proposition 2 apply:
types are preferences, that is, θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes in j’s
preferences do not affect i’s preferences if i 6= j.
Let A be a finite and ordered set of alternatives in R, the real line. For all i ∈ N , let Ri = S
be the set of strict single-peaked preferences on A according to the established real numbers
order. We introduce some notation: Given Rj ∈ S, p(Rj) denotes the peak, that is, the best
alternative, of Rj in A. Let L(Ri, x) = {y ∈ A : xPiy} be the strict lower contour set of Ri
at x. Given Rj ∈ S and x ∈ A, define r(Rj, x) as the first alternative in L(Rj, x) in the
opposite side of alternative x with respect to p(Rj).
To check for partial knitness, take any (x,R), (z, R̃) ∈ A × Sn such that C(R, z, x) =

C(R, z, x) 6= ∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x). Without loss of
generality, let x < z, which implies that p(Rj) > x. Also without loss of generality, let
C(R, z, x) = {1, 2, ..., c} where c denotes its cardinality. Now define S = S̃ = C(R, z, x) =
{1, 2, ..., c} and construct for each agent j ∈ {1, 2, ..., c}, R′j depending on the cases below.
Take any j ∈ C(R, z, x) and consider the following cases.
Case 1. R̃j is such that xP̃jz. Take R′j ∈ S such that p(R′j) ∈ [x, z), r(Rj, x) = z, and
zP ′jy for all y < x. Notice that such R′j exists, and the two following set inclusions hold:

L(Rj, x) ⊆ L(R′j, x), L(R̃j, z) ⊆ L(R′j, z). Thus, R
′
j is both an x-monotonic transform of Rj

and a z-monotonic transform of R̃j (observe that with strict preferences, the above inclusion
of strict lower contour sets is equivalent to Definition 2).
Case 2. R̃j is such that zP̃jx. Consider several subcases.
Case 2.1. L(Rj, x) ⊆ L(R̃j, x). Let R′j = R̃j and observe that R′j is an x-monotonic trans-

form of Rj (obviously, R′j is a z-monotonic transform of R̃j since R′j = R̃j).

Case 2.2. L(R̃j, x) $ L(Rj, x). We distinguish additional subcases which require different
definitions of R′j.

Case 2.2.1 . L(R̃j, x) $ L(Rj, x) and L(R̃j, z) ⊆ L(Rj, z). Let R′j = Rj and observe that R′j
is an x-monotonic transform of Rj (obviously since R′j = Rj) and R′j is also a z-monotonic

transform of R̃j.
Case 2.2.2 . L(R̃j, x) $ L(Rj, x) and L(Rj, z) $ L(R̃j, z). This implies that either (a)
p(Rj), p(R̃j) ∈ (x, z) or else (b) p(Rj), p(R̃j) > z.
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If (a) holds, then let R′j be such that p(R
′
j) ∈

[
min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}

]
,

r(R′j, x) = r(Rj, x) and r(R′j, z) ≥ r(R̃j, z). By definition of single-peakedness, such prefer-
ences R′j exists.

If (b) holds, then let R′j be such that p(R
′
j) ∈

[
z,min{p(Rj), p(R̃j)}

]
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z). By definition of single-peakedness, such preferences R′j exists.
Then, observe that R′j defined in (a) and (b) is both an x-monotonic transform of Rj and a

z-monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.

Case 2.2.3 : L(R̃j, x) $ L(Rj, x) and z ∈
(

min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}
)
. Assume

that p(Rj) < z < p(R̃j), otherwise, a similar argument would work.

This implies that either (a) r(Rj, x) ∈
(
z, p(R̃j)

]
or (b) r(Rj, x) ∈

(
p(R̃j), r(R̃j, x)

)
holds.

If (a) holds, then let R′j be such that p(R
′
j) ∈ [z, r(Rj, x)), r(R′j, x) ≤ r(Rj, x) and r(R′j, z) ≤

r(R̃j, z). By definition of single-peakedness, such preferences R′j exists.

If (b) holds, then letR′j be such that p(R
′
j) ∈

[
z,min{r(Rj, x), r(R̃j, z)}

)
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z).
Then, observe that R′j in (a) and (b) is both an x-monotonic transform of Rj and a z-

monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.
Finally, for each j ∈ C(R, z, x) we repeat the same argument.

Proof of Proposition 4. The same two observations as in the proof of Propositions 2 and
3 apply: types are preferences, that is, θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes
in j’s preferences do not affect i’s preferences if i 6= j.
The proof follows the same argument as the one in Proposition 2, given that agents have
all possible strict preferences over individual assignments and preferences are selfish. As
in Barberà, Berga, and Moreno (2016), just note that although preferences over individual
assignments are strict, preferences over alternatives allow for indifferences, by selfishness: all
alternatives with the same individual assignment are indifferent for such individual agent.
Thus, in the case of housing C(R, z, x) ⊇ C(R, z, x) holds andRzi are the preferences obtained
by lifting z and also all alternatives with the same individual assignment zi to the first
position and keep the relative position of all other alternatives.
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7 Appendix B

In this appendix we present some aspects of the applications in Section 4 with more detail,
in order to prove knitness or partially knitness of the environments defined in Examples 2 to
7. We also state and prove some intermediate results required for the auctions application.

Deliberative juries

Example 2 (continued)

Proposition 5 The environment (Θ, R) in Example 2 is knit.

Proof. To prove knitness we just need to combine the following two results.
(1) Consider a pair formed by (A, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N . Let
θ′ ∈ Θ be such that θ′1 = (l, i) and θ′j = (h, i) for any j ∈ N\{1}. We now define the sequence
S to sequentially go from type profile θ to type profile θ′ by successively changing the type
of the agents in S while preserving A-satisfactoriness. First change, one by one and in any
order, agents’signals from sj 6= i to i. By definition of l and h, in each of the above changes,
the induced preferences of the agent changing her type is an A-monotonic transform of her
previous preferences (sometimes an A-reshuffl ing).
Observe that by definition of the preference functions, the following condition is satisfied: if
ŝj = i for all j ∈ N , all jurors prefer A to C for any b̂j ∈ B.
We now change, one by one and in any order, each agent’s bj 6= h from bj to h for any
j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation made just above,
in each of these changes, the induced preferences of each agent is the same and therefore
they are an A-reshuffl ing of their previous preferences. Then, we have defined S such that θ
leads to θ′ through S and the passage from θ to θ′ is A-satisfactory.
(2) Consider a pair (C, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N . We now define
the sequence S to go from type profile θ to θ′ above by successively changing the type of
the agents in S while preserving C-satisfactoriness. First change, one by one and in any
order, agents from sj 6= g to g. By definition of l and h, in each of the above changes,
the induced preferences of the agent changing her type is a C-monotonic transform of her
previous preferences (sometimes a C-reshuffl ing).
Observe that by definition of the preference function, the following property is satisfied: if
ŝj = g for all j ∈ N , all jurors prefer C to A for any b̂j ∈ B.
We now change one by one, and in any order, each agent’s bj 6= h from bj to h for any
j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation made just above,
in each of these steps, the preferences of the agents stay the same and therefore they are a
C-reshuffl ing of their previous ones. After that, we change the signal of the agent 1 from g
to i. This implies that the preferences of agent 1 remain identical, but those of all others go
from C preferred to A, to A preferred to C, given that bj = h for any j ∈ N\{1}. Finally,
we change the type of the rest of the agents one by one from g to i. In each one of these
steps the preferences of the agent that moves is still A preferred to C. The passage from θ
to θ′ is C-satisfactory by construction.

Example 3 (continued)
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Before engaging in the proof that the environment in Example 3 is partially knit (see
Proposition 6), we develop the argument for a particular example.
Consider a particular pair of types and alternatives, (A, θ) and (C, θ̃) where θ = ((u, g), (u, i), (m, g))

and θ̃ = ((m, i), (u, i), (u, g)). Let θ′ = ((m, i), (u, i), (m, g)). The profiles of preferences they
induce are shown in Table 6.

R(θ) = R((u, g), (u, i), (m, g)) R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 6 : Aents’preferences induced by θ, θ̃, and θ′, respectively.

We can check that C(θ, C,A) = C(θ, C,A) = {1, 3} and θ̃2 = θ2 (that is, requirements in
Definition 6 are satisfied). As shown in Table 7 below, it is possible to move from θ to θ′ by
successively changing, one by one, the type of the agents. In this case, agent 1 from (u, g)
to (m, i). According to our notation, I(S) = {1}. Likewise, as shown in Table 8 below, we
can move from θ̃ to θ′ by successively changing, one by one, the type of some agents. In this
case, agent 3 from (u, g) to (m, g), that is, I(S̃) = {3}. In Table 7, note that the preferences
R1(θ

′) of agent 1 are an A-monotonic transform of her previous ones, which also involve a
change of those for agent 3. Similarly, notice that the preferences R3(θ

′) of 3 in Table 8 are
a C-reshuffl ing of her previous ones.

R(θ) = R, ((ug), (u, i), (m, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

Table 7 : Induced agents’preferences given the specified type changes from θ to θ′.

R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
A
C

A
C

A
C

A
C

A
C

A
C

Table 8 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

In Tables 7 and 8, we have illustrated the idea of partial knitness for two given type
profiles. We now show that any relevant pair of type profiles are connected through two
appropriate sequences.

Proposition 6 The environment (Θ, R) in Example 3 is partially knit.

Proof. Take two pairs (A, θ), (C, θ̃) ∈ A × Θ such that C(θ, C,A) = C(θ, C,A) 6= ∅,
#C(θ, C,A) ≥ 2, and for j ∈ N\C(θ, C,A), θ̃j = θj. By definition, for all j ∈ N , θj = (bj, sj)

and θ̃j = (̃bj, s̃j). We have to show that there exist θ′ ∈ Θ and sequences of types S and S̃
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such that θ leads to θ′ through S, θ̃ leads to θ′ through S̃, and the passages from θ and θ̃ to
θ′ are, respectively, A and C-satisfactory.
Let θ′ ∈ Θ be such that θ′j = (bj, g) for any j ∈ C(θ, C,A) and θ′j = θj for any j ∈
N\C(θ, C,A). Define the sequence S = {(bk, g)}, where k ∈ C(θ, C,A) and sk = i. Note
that I(S) is either a singleton or empty. If the latter, let θ′ be θ.
By definition of the preference function in the example, if some agent j prefers C to A, the
signal profile must be such that at most one agent k has signal i: sk = i. Thus, S is well-
defined. Moreover, bk = m since for unswerving jurors to have C over A their signal must
be g. And by definition of m increasing the support for g implies that preferences remain C
over A for agent k (i.e. and A-reshuffl ing) and will be C over A for the other agents.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now go from θ̃ to θ′ by successively changing the type of the agents in C(θ, C,A), one
by one in any order, from to s̃j 6= g to g. This set of agents are those in I(S̃).
By definition of the preference function, if one agent changes her signal by increasing the
support for a guilty veredict, then each agents’induced preferences remain either the same
as before or change in favor of C. Thus, in each one of the above changes, the induced
preferences of the agent changing her type is a C-monotonic transform of her previous ones
(sometimes a C-reshuffl ing).
Now, take any two pairs (C, θ), (A, θ̃) ∈ A × Θ such that C(θ, A, C) = C(θ, A,C) 6= ∅,
#C(θ, A, C) ≥ 2, and for j ∈ N\C(θ, A, C), θ̃j = θj, a similar argument would work but
defining θ′ ∈ Θ to be such that θ′j = (bj, i) for any j ∈ C(θ, A, C) and θ′j = θj for any
j ∈ N\C(θ, A, C). Define the sequence S = {(bk, i)}, where k ∈ C(θ, A, C) and sk = g.
Note that I(S) is either a singleton or empty. If the latter, let θ′ be θ.
Again, by definition of the preference function in the example, if some agent j prefers A to
C, the signal profile must be such that only one single agent, or at most two, have signal g.
In the latter case, none of the two are agent j, and both have preferences C over A. Thus, S
is well-defined. Moreover, by definition of m and u increasing if the single agent with signal
g says i, that preferences of this agent and those of all other agents will be A over C.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now sequentially go from θ̃ to θ′ by successively changing the type of the agents in
C(θ, A, C), one by one in any order, from to s̃j 6= i to i. This set of agents are those in I(S̃).
By definition of agents’preference function, if one agent changes her signal by increasing the
support for veredict of innocence, then each agents’induced preferences remain either the
same as before or change in favor of A. Thus, in each one of the above changes, the induced
preferences of the agent changing her type is a A-monotonic transform of her previous ones
(sometimes a A-reshuffl ing).

Private goods without money

Example 4 (continued)
We shall prove that the environment in this example is knit. In Example 4, we assume

that the sets Sac and Sca are non-empty.
Figure 1 provides a generic representation of these sets whose frontiers correspond to the

pairs of signals leading to agents’indifference curves over alternatives: {θ ∈ Θ = [0, 1]×[0, 1] :
xIi(θ)y}. Since we have assumed that gi is increasing in both signals, agents’indifference
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curves are strictly decreasing, and since Sac and Sca are non-empty the two curves will have
an interior intersection.23

We can now state and prove Proposition 7.

Proposition 7 The environment (Θ, R) in Example 4 is knit.

Proof. Given any two pairs (x, θ), (z, θ̃) ∈ A×Θ we will show that there exist θ′, S, S̃ such
that θ leads to θ′ through S, θ̃ leads to θ′ through S̃ and the passages are x and z-satisfactory.
We choose θ′ = (1, 1) independently of the two chosen pairs (x, θ), (z, θ̃) ∈ A×Θ. In defining
the sequence S from θ to θ′ with x as reference alternative, we distinguish two cases where
we will end up analyzing all possible θ ∈ Θ. In particular, we cover the case where θ and θ̃
are the same.
Case 1. θ ∈ Sca ∪ Saa ∪ S0. First change the type of agent 1 from θ1 6= 1 to 1. Since
the function g1 is increasing in type 1, the preferences of agent 1 induced by this change
are either an x-reshuffl ing (if θ ∈ Saa) or an x-monotonic transform (θ ∈ Sca ∪ S0) of her
original ones. Then change the type of agent 2 from θ2 to 1. Again, since the function g2 is
increasing in type 2, the preferences of agent 2 induced by this change are an x-reshuffl ing
of her original ones (see Picture 2.a in Figure 2).
Case 2. θ ∈ Sac ∪Scc. In this case we may not be able to change types of agents from θi 6= 1
to (1, 1) as directly as above.
If θ is a type profile from which we could reach another one in Saa by letting the type of
the first agent to be 1, we use the same argument as in Case 1: first change the type of
agent 1 from θ1 6= 1 to 1. The preferences of agent 1 induced by this change are either an
x-reshuffl ing (if θ ∈ Sac) or an x-monotonic transform (if θ ∈ Scc) of her original ones. Then
change the type of agent 2 from θ2 to 1. The preferences of agent 2 induced by this change

23Although in all pictures corresponding to this example the indifference curves only intersect once, our
formal arguments apply to the multiple intersection case.
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are an x-reshuffl ing of her original ones.
If not, before reaching this situation, the sequence S must start by previous changes of sig-
nals, at most one for each agent, as shown in Picture 2.b in Figure 2, that keep us within the
element of the partition where θ belongs to. The induced preferences resulting from these
previous type changes remain unchanged.

To define the sequence S̃ from θ̃ to θ′ with z as reference alternative, we would follow
a parallel construction to Cases 1 and 2 above. The relevant cases would now be Case
3: θ̃ ∈ Sac ∪ Saa ∪ S0 and Case 4: θ̃ ∈ Sca ∪ Scc where we would consider all possible type

profiles θ̃ ∈ Θ including θ. The proof for the existence of the sequence S̃ would require a
similar argument to those of Cases 1 and 2, respectively, but changing first agent 2’s signal
to 1 when required to get to Saa. See the graphical representation in Figure 3.
The construction of these passages proves that our environment is knit as we wanted to show.
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Example 5 (continued)
Before engaging in the proof that the environment in Example 5 is partially knit, observe

that the changes in the functions gi imply that the sets Sca = {θ ∈ Θ : zP1x and zP2x} and
Sac = {θ ∈ Θ : xP1z and xP2z} are empty, and that S0 is not a singleton. Due to the specific
form of gi the indifference set is L-shaped and thick, as shown in Figure 4.

Proposition 8 The environment (Θ, R) in Example 5 is partially knit.

Proof. Remember that type profiles are signal profiles. Thus, we identify s with θ. Take
any two pairs (x, θ), (z, θ̃) ∈ A×Θ such that C(θ, z, x) 6= ∅ and #C(θ, z, x) ≥ 2. These two
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conditions on θ imply that we must only consider θ ∈ Sca, i.e. where agent 1 strictly prefers
z to x and agent 2 is indifferent between x and z. Define θ′ = θ̃.
We have to define S such that θ leads to θ′ = θ̃ through S and the passage is x-satisfactory.
We distinguish two cases. See the graphical representation of both cases in Figure 5.
Case 1. θ̃ ∈ Saa ∪ Sca. Define S = {θ̃1, θ̃2} and I(S) = {1, 2}. Note that if θ̃, θ ∈ Sca the
proof is obvious since we move along the same set Sca and no agent preferences change.
Suppose that θ̃ ∈ Saa. We first increase the signal of agent 1 to θ′1 = θ̃1. The induced
preferences of agent 1 are an x-monotonic transform of her previous ones. Agent 2 turns
to strictly prefer z to x, that is, zR2(θ′1, θ2)x. Decrease or increase now agent 2’s signal to
θ′2 = θ̃2. Note that agent 2’s induced preferences are identical to her previous ones, thus, are
obviously an x-reshuffl ing of them. So we have gone from θ to θ′ through adequate types
changes with respect to x.
Case 2. θ̃ ∈ Scc ∪ Sac. Define S = {θ̃2, θ̃1} and I(S) = {2, 1}. We first decrease the signal
of agent 2 to θ′2 = θ̃2. The induced preferences of agent 2 are an x-monotonic transform of
her previous ones R2(θ) (since zP2(θ)x while xP2(θ1, θ′2)z). Agent 1 turns to have the same
preferences as before, that is, zR1(θ1, θ′2)x. Now, we decrease or increase agent 1’s signal to
θ′1 = θ̃1. Note that agent 2’s induced preferences are either identical to her previous ones
(thus, obviously an x-reshuffl ing of those) or an x-monotonic transform of R1(θ1, θ′2) (since
zP1(θ1, θ

′
2)x while zI1(θ

′
1)x). So, we have gone from θ to θ′ through adequate changes of

types with reference x.
It would remain to consider any two pairs where (z, θ), (x, θ̃) ∈ A × Θ are such that
C(θ, x, z) 6= ∅ and #C(θ, x, z) ≥ 2, a symmetric and similar argument would work.

Finally, we show that the mechanism fveto x defined in Section 4.2 is non-constant, satisfies
ex post incentive compatibility and respectfulness in the environment (Θ, R) defined in
Example 5. which implies, by Theorem 1, that the environment in Example 5 is not knit.
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Lemma 1 fveto,x is non-constant, ex post incentive compatible, and respectful in the envi-
ronment (Θ, R) in Example 5.

Proof. Observe that, by definition, fveto x is non-constant and no agent can gain by chang-
ing her individual types, since she will either obtain the same or an indifferent one, when
deviating, or else obtain her best outcome through by being truthful. Ex post group in-
centive compatibility is straightforward since changing both types it is impossible to weakly
improve both agents, and at least on of them strictly: Note that either agent 1 or 2 strictly
lose (we need to check 6 cases: θ ∈ Saa and θ′ ∈ Sca or viceversa; θ ∈ Sac and θ′ ∈ Sca or
viceversa; and θ ∈ Scc and θ′ ∈ Sac or viceversa). To show that fveto x is respectful, note
that the only way for agent 1 to remain indifferent according to her initial preferences R1(θ)
and get a different outcome when changing her type is when θ ∈ Sac and θ′1 < 1

4
such that

(θ′1, θ2) ∈ Scc. However, R1(θ′1, θ2) is not an x = fveto x(θ)-monotonic transform of R1(θ).
Similarly, for agent 2, to remain indifferent and get a different outcome when changing her
type θ ∈ S0 and θ2 ≥ 1

4
, θ′2 <

1
4
. However, R2(θ1, θ′2) is not a z = fveto x(θ)-monotonic

transform of R2(θ).

Auctions

Example 6 (continued)
The following Lemma 2 is used in the proofs of Propositions 9 and 11 below.

Lemma 2 Let gk be non-decreasing in sk. For all s ∈ Θ, Rk(s′k, s−k) is a y-monotonic
transform of Rk(s) for all s′k < sk, k ∈ N and y ∈ A such that yk = (0, 0).

Proof. Take s ∈ Θ, k ∈ N and y ∈ A such that yk = (0, 0) and s′k < sk. Since gk is non-
decreasing in sk, gk(s′k, sN\{k}) ≤ gk(s) which means that agent k values the good in signal
profile (s′k, sN\{k}) at most as under profile s. Thus, (0, 0) weakly improves its position in
Rk(s

′
k, sN\{k}) compared to its position in Rk(s). Formally, Rk(s

′
k, sN\{k}) is a y-monotonic

transform of Rk(s).

Proposition 9 The environment (Θ, R) in Example 6 is knit.

Proof. Take any two pairs (x, θ), (z, θ̃) ∈ A×Θ. We must find θ′, sequences of types S and
S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to
θ′ through S̃ is z-satisfactory.
Consider θ′ =

(
s̃i, sN\{i}

)
. We first propose a sequence of types S =s (tS = n) with I(S)

defined as follows. We initially change, one by one, the signal of agents that do not get the
good in x from sk to sk following the order of natural numbers. If there is one agent i left
who was getting the good in x change her signal from si to si. In each step h ∈ {1, ..., n−1},
by Lemma 2, we obtain that Rh(mh(θ, S)) is an x-monotonic transform of Rh(mh−1(θ, S))
since no agent h gets the good in x.
As for the last agent in the sequence, her preferences will not change when her signal goes
from si to si due to assumption (b) of function gi.
This completes our argument that the passage from θ to θ′ through S is x-satisfactory.
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We could repeat exactly the same argument to show that the passage from θ̃ to θ′ through
S̃ is z-satisfactory after replacing the roles of θ by θ̃ and x by z.

Proposition 10 Any ex post group incentive compatible mechanism that always allocates
the good to some agent is constant, if all auxiliary functions gi satisfy (b) and (c).

Proof. Take x = f(s) and without loss of generality suppose that agent 1 gets the good
and pays p. We show that f is constant by the following steps.

Step 1. For any s = (s1, s2, ...sn), such that sj ∈ Θj for j ∈ N\{1}, then agent 1 gets the
good and pays p.
Take any agent that does not get the good, without loss of generality, say agent 2. Con-
sider s = (s2, sN\{2}) where s2 < s2. By condition (c) of gi (that is, gi is strictly in-
creasing in all sj, j ∈ N), g2(s2, sN\{2}) < g2(s). Ex post incentive compatibility implies
that f2(s2, sN\{2}) = f2(s) = (0, 0). Take now any other agent k ∈ N\{1, 2}. By condi-
tion (c), for each k ∈ N\{1, 2}, gk(s2, sN\{2}) < gk(s). Thus, by ex post group incentive
compatibility, we get that for any k ∈ N\{1, 2} fk(s2, sN\{2}) = fk(s) = (0, 0). This im-
plies that agent 1 gets the good at (s2, sN\{2}). Moreover, agent 1 pays the same price
p. Otherwise, if p′ < p, coalition N would profitably deviate from s to (s2, sN\{2}) since
f1(s2, sN\{2}) = (1, p′)P1(s)f1(s) = (1, p). The other way around if p′ > p.
Repeating n − 2 additional times the same argument, one for each agent j ∈ N\{1, 2}, we
obtain that for any s = (s1, s2, ...sn), such that sj ∈ Θj for j ∈ N\{1}, agent 1 gets the good
and pays p.

Step 2. For any s = (s1, sN\{1}), such that s1 ∈ Θ1, then agent 1 gets the good and pays p.
By condition (b) of g1, g1(s1, sN\{1}) = g1(s) for any s1 ∈ Θ1. Thus, for any s1 ∈ Θ1, agent
1’s preferences R1(s1, sN\{1}) coincide with R1(s). In particular, R1(s1, sN\{1}) coincide with
R1(s). By ex post incentive compatibility, for all s1 ∈ Θ1, f1(s1, sN\{1})I1(s1, sN\{1})f1(s1, sN\{1}),
being f1(s1, sN\{1}) = (1, p) by Step 1. If agent 1 gets the good at (s1, sN\{1}), since
R1(s1, sN\{1}) coincide withR1(s1, sN\{1}), the price must be the same. That is, f1(s1, sN\{1}) =
(1, p) and then the proof of Step 2 ends. Otherwise, take l ∈ N\{1} such that fl(s1, sN\{1}) =
(1, pl). By condition (c) of gl, gl(s1, sN\{1}) < gl(s1, sN\{1}). Note that if pl < gl(s1, sN\{1}),
coalition {1, l} can ex post profitably deviate at (s1, sN\{1}) via (s1, sl) (agent l would strictly
gain while 1 remain indifferent). If pl ≥ gl(s1, sN\{1}), coalition {1, l} can ex post profitably
deviate at (s1, sN\{1}) via (s1, sl) (agent l would strictly gain). Thus, we have shown that
agent 1 gets the good and pays p at (s1, sN\{1}), for any s1 ∈ Θ1.

Step 3. For any s ∈ Θ such that s1 < s1 and there exists l ∈ N\{1} such that sl > sl, then
agent 1 gets the good and pays p.
Let C = {i ∈ N\{1} : si > si}.
First, observe that if agent 1 gets the good at s in Step 3, by ex post incentive compatibility,
the price must be p. Otherwise, 1 could ex post profitably deviate at s via s1 if p′ > p,
or at (s1, sN\{1}) via s1 if p > p′. Consider the following two cases for which we obtain a
contradiction.

Step 3.1. Agent k ∈ N\{1} gets the good at s and sk > sk.
Take an agent j ∈ C\{k} who does not get the good at s and change her type from sj

35



to sj. If C\{k} is empty, we have that fk(sk, sN\{k}) = (1, p′), and by applying the same
argument as in Step 2 we would get fk(s) = (1, p′), which contradicts the reasoning in
Step 2 when applied to s. Otherwise, by condition (c) of gj, gj(sj, sN\{j}) < gj(sj, sN\{j}).
By ex post incentive compatibility, fj(s) = fj(sj, sN\{j}) = (0, 0). Again, if C\{k, j} is
empty, we have that fk(sk, sN\{k}) = (1, p′) and by applying the same argument as in Step
2 we would get fk(s) = (1, p′) which contradicts Step 2 applied to s. Otherwise, take j′ ∈
C\{k, j}, and by condition (c) of gj′, gj′(sj, sN\{j}) < gj′(sj, sN\{j}). If for any j′ ∈ N\{k},
fj′(sj, sN\{j}) = fj′(sj, sN\{j}) = (0, 0), we obtain that fk(sj, sN\{j}) = (1, p′) and we repeat
the same argument in Step 3.1 for l ∈ C\{k, j}. If for some j′, fj′(sj, sN\{j}) 6= (0, 0), we
would get a contradiction to ex post group incentive compatibility: {j, j′} would profitably
deviate from (sj, sN\{j}) via (sj, sj′) if p′ > gj(sj, sN\{j}) and from (sj, sN\{j}) via (sj, sj′) if
p′ ≤ gj(sj, sN\{j}). Thus, fk(sj, sN\{j}) = (1, p′).
By repeating the same argument, and changing one by one the signal from sl to sl for each
l ∈ C\{k}, we obtain that fk(sk, sN\{k}) = (1, p′).
Now, by using a similar argument as the one in Step 2 by replacing agent 1 by k, we can
show that fk(s) = (1, p′) which is a contradiction to Step 2.
Step 3.2. Agent k ∈ N\{1} gets the good at s and sk = sk.
We obtain a contradiction using an argument similar to the one in Step 3.1.
Thus, agent 1 gets the good at any s and pays p.

Example 7 (continued)
The following Lemma 3 is used in the proof of Proposition 11.

Lemma 3 For all s ∈ Θ, Rk(s′k, s−k) is a y-monotonic transform of Rk(s) for all s′k > sk,
k ∈ N and y ∈ A such that yk = (1, p), p ≥ 0.

Proof. Take s ∈ Θ, k ∈ N and y ∈ A such that yk = (1, p), p ≥ 0 and s′k > sk. Since gk
is non-decreasing in sk, gk(s′k, sN\{k}) ≥ gk(s) which means that agent k values the good in
signal profile (s′k, sN\{k}) at least as under profile s. Thus, (1, p) weakly improves its position
in Rk(s′k, sN\{k}) compared to its position in Rk(s). Formally, Rk(s

′
k, sN\{k}) is a y-monotonic

transform of Rk(s).

Proposition 11 The environment (Θ, R) in Example 7 is partially knit.

Proof. Take any two pairs (x, θ), (z, θ̃) ∈ A× Θ such that C(θ, z, x) 6= ∅, #C(θ, z, x) = 2.
Some agent must get the good either in x or in z, otherwise C(θ, z, x) = ∅.
First, assume that the same agent i gets the good both in x and in z. Define θ′ =
(max{si, s̃i}, min{sj, s̃j}), S = S̃ = {max{si, s̃i}, min{sj, s̃j}} where I(S) = I(S̃) = {i, j}.
Note that for step h = 1, either si(S,1) = si(S̃,1) = si if si > s̃i or si(S,1) = si(S̃,1) = s̃i
if si < s̃i. Thus, either because there is no signal change or by Lemma 3, we obtain that
Ri(m

1(θ, S)) is an x-monotonic transform ofRi(m0(θ, S)) andRi(m1(θ̃, S̃)) is an z-monotonic
transform of Ri(m0(θ̃, S̃)). Note that for step 2, either si(S,h) = si(S̃,h) = sj if sj < s̃j or
si(S,h) = si(S̃,h) = s̃j if sj > s̃j. Thus, either because there is no signal change or by Lemma
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2, we obtain in step 2 that Rj(m2(θ, S)) is an x-monotonic transform of Rj(m1(θ, S)) and
Rj(m

2(θ̃, S̃)) is a z-monotonic transform of Rj(m1(θ̃, S̃)). Thus, the passage from θ to θ′

through S is x-satisfactory, and that from θ̃ to θ′ through S̃ is z-satisfactory.

Second, suppose that different agents get the good in x and z. Without loss of generality,
say that agent 1 gets the good in x while agent 2 gets it in z. Thus, alternatives x and z are
such that x1 = (1, px), z1 = (0, 0), x2 = (0, 0), z2 = (1, pz).
Now, we consider three cases, and for each one we define θ′ and the sequences of types S
and S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from
θ̃ to θ′ through S̃ is z-satisfactory.
Case 1. θ = (0, 1).
The conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N are satisfied since px > l and pz > l.
For any θ̃ define θ′ = θ̃. If θ̃ = (1, 1), let S = {θi(S,1) = 1}, I(S) = {1}, if θ̃ = (0, 0),
let S = {θi(S,1) = 0}, I(S) = {2}, and if θ̃ = (1, 0), let S = {θi(S,1) = 1, θi(S,2) = 0},
I(S) = {1, 2}. By applying Lemma 3, Lemma 2 or both, respectively, we prove that the
passage from θ to θ̃ = θ′ through S is x-satisfactory.
Case 2. θ = (1, 1).
For conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N to hold we must have either px > m and
pz ≤ m, or pz < m and px ≥ m. Suppose that the former holds. Otherwise, a similar proof
would follow.
If θ̃ = (0, 1), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m and pz ≤ m.
If θ̃ = (1, 0), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {2}, and observe that
R2(m

1(θ, S)) is an x-monotonic transform of R2(θ) by Lemma 2.
If θ̃ = (0, 0), let θ′ = (0, 1) and define S = {θi(S,1) = 0}, I(S) = {1}, S̃ = {θi(S̃,1) = 1},
I(S̃) = {2}. Again, observe that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m and
pz ≤ m. Moreover, R2(m1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) since l < pz ≤ m.
Case 3. θ = (0, 0) and θ = (1, 0).
For both θ, g2(θ) = l. Since 2 ∈ C(θ, z, x) then pz ≤ l, contradicting our hypothesis.

Third, the last remaining possibility is that in only one of the two alternatives, x or z,
some agent gets the good. Without loss of generality, suppose that agent 1 gets the good
in x. Note that for conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N to hold, for any θ ∈ Θ,
1 ∈ C(θ, z, x) since 2 ∈ C(θ, z, x).
Now, we consider four cases, and for each one we define θ′ and the sequences of types S and
S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to
θ′ through S̃ is z-satisfactory.
Case 1. θ = (0, 1).
Since 1 ∈ C(θ, z, x), px > l must be satisfied. For any θ̃ define θ′ = θ̃. If θ̃ = (1, 1), let
S = {θi(S,1) = 1} and I(S) = {1}, if θ̃ = (0, 0), let S = {θi(S,1) = 0} and I(S) = {2}, and
if θ̃ = (1, 0), let S = {θi(S,1) = 1, θi(S,2) = 0} and I(S) = {1, 2}. By applying either Lemma
3, Lemma 2 or both consecutively in this order, we prove that the passage from θ to θ̃ = θ′

through S is x-satisfactory.
Case 2. θ = (1, 1).
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Since 1 ∈ C(θ, z, x), px > m must be satisfied.
If θ̃ = (0, 1), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m.
If θ̃ = (1, 0), let θ′ = θ̃ and define S = {θi(S,1) = 1}, I(S) = {2}, and observe that
R2(m

1(θ, S)) is an x-monotonic transform of R2(θ) by Lemma 2.
If θ̃ = (0, 0), let θ′ = θ̃ and define S = {θi(S,1) = 0, θi(S̃,2) = 0}, I(S) = {1, 2}. Again, observe
that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m. Moreover, R2(m2(θ, S)) is an
x-monotonic transform of R2(m1(θ, S)) by Lemma 2.
Case 3. θ = (0, 0).
Since 1 ∈ C(θ, z, x), px > l must be satisfied.
If θ̃ = (0, 1), let θ′ = θ and define S̃ = {θi(S̃,1) = 0}, I(S̃) = {2}, and observe that
R2(m

1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) by Lemma 2.
If θ̃ = (1, 0), let θ′ = θ and define S̃ = {θi(S̃,1) = 0}, I(S̃) = {1}, and observe that
R1(m

1(θ̃, S̃)) is a z-monotonic transform of R1(θ̃) by Lemma 2.
If θ̃ = (1, 1), let θ′ = θ and define S̃ = {θi(S̃,1) = 0, θi(S̃,2) = 0}, I(S) = {2, 1}, and observe
that, by Lemma 2, R2(m1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) and R1(m2(θ̃, S̃)) is a
z-monotonic transform of R1(m1(θ̃, S̃)).
Case 4. θ = (1, 0).
Since 1 ∈ C(θ, z, x), px > h must be satisfied.
If θ̃ = (0, 0), let θ′ = θ̃ = (0, 0) and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > h.
If θ̃ = (0, 1), let θ′ = (0, 0) and define S = {θi(S,1) = 0} and I(S) = {1}, S̃ = {θi(S̃,1) = 0} and
I(S̃) = {2}. Observe that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > h. Moreover,
R2(m

2(θ̃, S̃)) is a z-monotonic transform of R2(m1(θ̃, S̃)) by Lemma 2.
If θ̃ = (1, 1), let θ′ = (0, 0) and define S = {θi(S,1) = 0} and I(S) = {1}, S̃ = {θi(S̃,1) =

0, θi(S̃,2) = 0} and I(S̃) = {1, 2}. Again, observe that R1(m1(θ, S)) is an x-reshuffl ing of

R1(θ) since px > m. Moreover, R1(m1(θ̃, S̃)) is a z-monotonic transform of R1(θ̃) and
R2(m

2(θ̃, S̃)) is a z-monotonic transform of R2(m1(θ̃, S̃)) by Lemma 2.

Lemma 4 fp,p′ is non-constant, ex post incentive compatible, and respectful in the environ-
ment (Θ, R) in Example 7.

Proof. By definition fp,p′ is not constant. To show that fp,p′ is ex post incentive compatible
we first observe that agent 1 can never strictly gain by deviating from any s ∈ Θ. For any
s2 ∈ Θ2, since g1(0, s2)) = l, g1(1, s2) ∈ {m,h}, and p ∈ (l,m), then f1(0, s2)P1(0, s2)f1(1, s2)
and f1(1, s2)P1(1, s2)f1(0, s2) where f1(0, s2) = (0, 0) and f1(1, s2) = (1, p). Similarly, we can
show that agent 2 can never strictly gain by deviating from any s ∈ Θ. For any s1 ∈ Θ1,
since g2(s1, 0) = l, g2(s1, 1) ∈ {m,h}, and p′ ∈ (l,m), then f2(s1, 0)R2(s1, 0)f2(s1, 1) and
f2(s1, 1)R2(s1, 1)f2(s1, 0) where f2(s1, 0) = (0, 0) and f2(s1, 1) ∈ {(0, 0), (1, p′)}. To check
respectfulness, observe that agent 1 is not indifferent between any pair of outcomes obtained
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when she is the only one changing types. As for agent 2, observe that the same holds if
s1 = 0. For s1 = 1, f(1, 0) = f(1, 1). Thus, respectfulness holds.

Remark 2

The following Example and Lemma justify our observation in Remark 2.

Example 8. For simplicity, let N = {1, 2}, Θi = {0, 1} for all i ∈ N and l,m, h ∈ R+
with 0 = l < m < h. The agent’s preference function is defined as in the general framework
but will now be based on a different auxiliary function that takes three possible values, low,
medium and high.
More formally,

gi(s) =


l if si = 0
m if si = 1 and sj = 0,
h if si = 1 and sj = 1.

Observe that for each agent i, gi satisfies (a) and the following condition:
(e) gi is non-decreasing in sj, for all j ∈ N\{i}.
Condition (e) establishes that the valuation of the good by agent i depends positively on

other agents’signals.
Now, we assert that the environment in Example 8 is neither knit nor partially knit. To do

so, we define below a non-constant, ex post incentive compatible and respectful mechanism
in such environment that is not ex post group incentive compatible. Therefore, by Theorem
1, the environment is not partially knit.
A mechanism fh,m is such that agent 1 gets the good and pays h if the signal of agent 2

is 0 or both agents’signals are 1 and agent 2 gets the good and pays m otherwise. Formally,
for θ ∈ {0, 1}2,

fh,m(θ) =


((1, h), (0, 0)) if s2 = 0,

((0, 0), (1,m)) if s1 = 0, s2 = 1, and
((1, h), (0, 0)) if s1 = 1 = s2

 .

Lemma 5 fh,m is non-constant, ex post incentive compatible, and respectful but it violates
ex post group incentive compatibility in the environment (Θ, R) in Example 8.

Proof. To check ex post incentive compatibility just observe that no single agent can strictly
gain by unilateral deviations. To check respectfulness, we need to consider s and s′ such
that f(s) 6= f(s′), where only one agent changes her type and remains indifferent. Two
cases need to be checked. First, let s = (1, 1), s′ = (0, 1). Observe that neither R1(0, 1) is
a f(1, 1)-monotonic transform of R1(1, 1) nor R1(1, 1) is a f(0, 1)-monotonic transform of
R1(0, 1). Second, let s = (0, 1) and s′ = (0, 0). Again, neither R2(0, 0) is a f(0, 1)-monotonic
transform of R2(0, 1) nor R2(0, 1) is a f(0, 0)-monotonic transform of R2(0, 0). Thus these
cases do not need to be considered and respectfulness holds. To check that fh,m violates
ex post group incentive compatibility, consider s = (1, 1), C = N , s′C = (0, 1). Note that
(0, 0) = f1(0, 1)I1(1, 1)f1(1, 1) = (1, h) and (1,m) = f2(0, 1)P2(1, 1)f2(1, 1) = (0, 0) which
means that coalition N can ex post profitably deviate under mechanism f at s ∈ Θ via s′C .
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